Advertisement

On Acoustic Monitoring of Farm Environments

  • Stavros Ntalampiras
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 968)

Abstract

Green revolution suggests that agriculture systems, such as farms turn into dynamic entities boosting animal production in an eco-friendly way. In this direction, we propose exploiting the acoustic modality for farm monitoring. Such information could be used in a stand-alone or complimentary mode to monitor the farm constantly and provide a great level of detail. To this end, we designed a scheme classifying the vocalizations produced by farm animals. We employed a feature set able to capture diverse characteristics of generalized sound events seen from different domain representations (time, frequency, and wavelet). These are modeled using state of the art generative and discriminative classification schemes. We performed extensive experiments on a publicly available dataset, where we report encouraging recognition rates.

Keywords

Acoustic farm monitoring Intelligent farming Audio signal processing Hidden Markov model Echo state network Random forest Support vector machine Multidomain acoustic parameters 

References

  1. 1.
    Al-Maathidi, M.M., Li, F.F.: Audio content feature selection and classification a random forests and decision tree approach. In: 2015 IEEE International Conference on Progress in Informatics and Computing (PIC), pp. 108–112, December 2015.  https://doi.org/10.1109/PIC.2015.7489819
  2. 2.
    Anu, V.M., Deepika, M.I., Gladance, L.M.: Animal identification and data management using RFID technology. In: International Conference on Innovation Information in Computing Technologies, pp. 1–6, February 2015.  https://doi.org/10.1109/ICIICT.2015.7396069
  3. 3.
    Banerjee, D., et al.: A deep transfer learning approach for improved post-traumatic stress disorder diagnosis. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 11–20, November 2017.  https://doi.org/10.1109/ICDM.2017.10
  4. 4.
    Blumstein, D., et al.: Acoustic monitoring in terrestrial environments using microphone arrays: applications, technological considerations and prospectus. J. Appl. Ecol. 48(3), 758–767 (2011).  https://doi.org/10.1111/j.1365-2664.2011.01993.xCrossRefGoogle Scholar
  5. 5.
    Casey, M.: MPEG-7 sound-recognition tools. IEEE Trans. Circuits Syst. Video Technol. 11(6), 737–747 (2001)CrossRefGoogle Scholar
  6. 6.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). http://www.csie.ntu.edu.tw/~cjlin/libsvm
  7. 7.
    Chen, L., Gunduz, S., Ozsu, M.T.: Mixed type audio classification with support vector machine. In: 2006 IEEE International Conference on Multimedia and Expo, pp. 781–784, July 2006.  https://doi.org/10.1109/ICME.2006.262954
  8. 8.
    Dong, X., Towsey, M., Zhang, J., Roe, P.: Compact features for birdcall retrieval from environmental acoustic recordings. In: 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pp. 762–767, November 2015.  https://doi.org/10.1109/ICDMW.2015.153
  9. 9.
    Exadaktylos, V., Silva, M., Berckmans, D.: Automatic identification and interpretation of animal sounds, application to livestock production optimisation (Chap. 4). In: Glotin, H. (ed.) Soundscape Semiotics - Localization and Categorization. InTech, Rijeka (2014).  https://doi.org/10.5772/56040CrossRefGoogle Scholar
  10. 10.
    Eyben, F., Weninger, F., Gross, F., Schuller, B.: Recent developments in opensmile, the munich open-source multimedia feature extractor. In: Proceedings of the 21st ACM International Conference on Multimedia, MM 2013, pp. 835–838. ACM, New York (2013).  https://doi.org/10.1145/2502081.2502224
  11. 11.
    Frank, E., et al.: Weka-a machine learning workbench for data mining. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 1269–1277. Springer, Boston (2010).  https://doi.org/10.1007/978-0-387-09823-4_66CrossRefGoogle Scholar
  12. 12.
    Grill, T., Schlüter, J.: Two convolutional neural networks for bird detection in audio signals. In: 2017 25th European Signal Processing Conference (EUSIPCO), pp. 1764–1768, August 2017.  https://doi.org/10.23919/EUSIPCO.2017.8081512
  13. 13.
    Han, N.C., Muniandy, S.V., Dayou, J.: Acoustic classification of australian anurans based on hybrid spectral-entropy approach. Appl. Acoust. 72(9), 639–645 (2011).  https://doi.org/10.1016/j.apacoust.2011.02.002CrossRefGoogle Scholar
  14. 14.
    Kim, H.G., Sikora, T.: Comparison of MPEG-7 audio spectrum projection features and MFCC applied to speaker recognition, sound classification and audio segmentation. In: 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing. vol. 5, pp. V-925-8, May 2004.  https://doi.org/10.1109/ICASSP.2004.1327263
  15. 15.
    Kojima, R., Sugiyama, O., Hoshiba, K., Suzuki, R., Nakadai, K.: A spatial-cue-based probabilistic model for bird song scene analysis. In: 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 395–404, October 2017.  https://doi.org/10.1109/DSAA.2017.34
  16. 16.
    Kumar, A., Hancke, G.P.: A zigbee-based animal health monitoring system. IEEE Sens. J. 15(1), 610–617 (2015).  https://doi.org/10.1109/JSEN.2014.2349073CrossRefGoogle Scholar
  17. 17.
    Matějka, P., et al.: Full-covariance UBM and heavy-tailed PLDA in I-vector speaker verification. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4828–4831, May 2011.  https://doi.org/10.1109/ICASSP.2011.5947436
  18. 18.
    Mitrovic, D., Zeppelzauer, M., Breiteneder, C.: Discrimination and retrieval of animal sounds. In: 2006 12th International Multi-Media Modelling Conference, 5 p. (2006).  https://doi.org/10.1109/MMMC.2006.1651344
  19. 19.
    Nagpal, S.K., Manojkumar, P.: Hardware implementation of intruder recognition in a farm through wireless sensor network. In: 2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS), pp. 1–5, February 2016.  https://doi.org/10.1109/ICETETS.2016.7603012
  20. 20.
    Noda, J.J., Travieso, C.M., Sánchez-Rodríguez, D., Dutta, M.K., Singh, A.: Using bioacoustic signals and support vector machine for automatic classification of insects. In: 2016 3rd International Conference on Signal Processing and Integrated Networks, pp. 656–659, February 2016.  https://doi.org/10.1109/SPIN.2016.7566778
  21. 21.
    Ntalampiras, S.: A novel holistic modeling approach for generalized sound recognition. IEEE Sig. Process. Lett. 20(2), 185–188 (2013).  https://doi.org/10.1109/LSP.2013.2237902CrossRefGoogle Scholar
  22. 22.
    Ntalampiras, S.: Automatic analysis of audiostreams in the concept drift environment. In: 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6, September 2016.  https://doi.org/10.1109/MLSP.2016.7738905
  23. 23.
    Ntalampiras, S.: Moving vehicle classification using wireless acoustic sensor networks. IEEE Trans. Emerg. Topics Comput. Intell. 2(2), 129–138 (2018).  https://doi.org/10.1109/TETCI.2017.2783340CrossRefGoogle Scholar
  24. 24.
    Ntalampiras, S.: Universal background modeling for acoustic surveillance of urban traffic. Digit. Sig. Process. 31, 69–78 (2014).  https://doi.org/10.1016/j.dsp.2014.05.003. http://www.sciencedirect.com/science/article/pii/S1051200414001390
  25. 25.
    Ntalampiras, S.: A transfer learning framework for predicting the emotional content of generalized sound events. J. Acoust. Soc. Am. 141(3), 1694–1701 (2017).  https://doi.org/10.1121/1.4977749CrossRefGoogle Scholar
  26. 26.
    Ntalampiras, S.: Bird species identification via transfer learning from music genres. Ecol. Inform. 44, 76–81 (2018).  https://doi.org/10.1016/j.ecoinf.2018.01.006CrossRefGoogle Scholar
  27. 27.
    Ntalampiras, S., Potamitis, I.: Transfer learning for improved audio-based human activity recognition. Biosensors 8(3), 60 (2018).  https://doi.org/10.3390/bios8030060CrossRefGoogle Scholar
  28. 28.
    Ntalampiras, S., Potamitis, I., Fakotakis, N.: Exploiting temporal feature integration for generalized sound recognition. EURASIP J. Adv. Sig. Process. 2009, 807162 (2009)CrossRefGoogle Scholar
  29. 29.
    Ntalampiras, S., Potamitis, I., Fakotakis, N.: Acoustic detection of human activities in natural environments. J. Audio Eng. Soc. 60(9), 686–695 (2012). http://www.aes.org/e-lib/browse.cfm?elib=16373
  30. 30.
    Piczak, K.J.: ESC: dataset for environmental sound classification. In: Proceedings of the 23rd ACM International Conference on Multimedia, MM 2015, pp. 1015–1018. ACM, New York (2015). https://doi.org/10.1145/2733373.2806390
  31. 31.
    Rabiner, L.R.: A tutorial on hidden Markov models and selected applications inspeech recognition. Proc. IEEE 77(2), 257–286 (1989).  https://doi.org/10.1109/5.18626CrossRefGoogle Scholar
  32. 32.
    Scardapane, S., Uncini, A.: Semi-supervised echo state networks for audio classification. Cogn. Comput. 9(1), 125–135 (2017).  https://doi.org/10.1007/s12559-016-9439-zCrossRefGoogle Scholar
  33. 33.
    Stowell, D.: Computational bioacoustic scene analysis. In: Virtanen, T., Plumbley, M., Ellis, D. (eds.) Computational Analysis of Sound Scenes and Events, pp. 303–333. Springer International Publishing, Cham (2018).  https://doi.org/10.1007/978-3-319-63450-0_11CrossRefGoogle Scholar
  34. 34.
    Towsey, M.W., Truskinger, A.M., Roe, P.: The navigation and visualisation of environmental audio using zooming spectrograms. In: 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pp. 788–797, November 2015.  https://doi.org/10.1109/ICDMW.2015.118

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of MilanMilanItaly

Personalised recommendations