Curvelet Based Thinning Algorithm

  • R. L. JyothiEmail author
  • M. Abdul Rahiman
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 968)


Efficiency of a recognition algorithm depends upon availability of noiseless and classes of images with unique and differentiable features. Thinning plays an important part in building a recognition system for various types of images. It is mainly used in handwritten character recognition systems and Biometric systems. In Handwritten character recognition systems where there exist large variations within same class of images, thinning plays a vital role. Here curvelet based thinning algorithm is proposed which produces better results compared to other thinning algorithms. The capability of curvelet transform in estimation of directional features added to the strength of proposed work. Curvelet transform is combined with watershed algorithm, binarization and skeletonization to produce the final thinned output. The efficiency of the proposed work has been estimated in this work through detailed experimental analysis and comparisons with 7 efficient thinning algorithms. The measures used for comparison in this works are number of foreground pixels, PSNR (peak signal to noise ratio), MSE (mean square error), RMSE (root mean square error), reduction rate and thinness ratio.


Curvelet transform Watershed algorithm Handwritten character recogntion systems Palm leaves Grantha script 


  1. 1.
    Ma, J., Plonka, G.: The curvelet transform. IEEE Sig. Process. Mag. 27, 118–133 (2010)CrossRefGoogle Scholar
  2. 2.
    Kumar, H., Kaur, P.: A comparative study of iterative thinning algorithms for BMP images. Int. J. Comput. Sci. Inf. Technol. 2, 2375–2379 (2011)Google Scholar
  3. 3.
    Blum, H.: A transformation for extracting new descriptors of shape. In: Symposium on Models for the Perception of Speech and Visual Form. MIT Press, Cambridge (1964)Google Scholar
  4. 4.
    Palvidis, T.: Structural Pattern Recognition. Springer, Heidelberg (1977). Scholar
  5. 5.
    Hilditch, C.J.: Linear skeletons from square cupboards. In: Machine Intelligence, pp. 403–420. University Press, Edinburgh (1969)Google Scholar
  6. 6.
    Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27, 236–239 (1984)CrossRefGoogle Scholar
  7. 7.
    Lu, H.E., Wang, P.S.P.: An improved fast parallel algorithm for thinning digital patterns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 364–367 (1985)Google Scholar
  8. 8.
    Wang, P.S.P., Hui, L., Fleming, T.: Further improved fast parallel thinning algorithm for digital patterns. In: Computer Vision Image Processing and Communication Systems and Applications, pp. 37–40 (1986)Google Scholar
  9. 9.
    Kwon, J.-S., Gi, J.-W., Kang, E.-K.: An enhanced thinning algorithm using parallel processing. In: Proceedings of 2001 International Conference on Image Processing (2002)Google Scholar
  10. 10.
    Tellache, M., Sid-Ahmed, M., Abaza, B.: Thinning algorithms for Arabic OCR. In: Proceedings of IEEE Pacific Rim Conference on Communications Computers and Signal Processing, pp. 248–251 (1993)Google Scholar
  11. 11.
    Guo, Z., Hall, R.W.: Parallel thinning with two subiteration algorithms. Commun. ACM 32, 359–373 (1989)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Abdulla, W.H., Saleh, A.O.M., Morad, A.H.: A preprocessing algorithm for handwritten character recognition. Pattern Recogn. Lett. 7, 13–18 (1988)CrossRefGoogle Scholar
  13. 13.
    Holt, C.M., Stewart, A., Clint, M., Perrott, R.H.: An improved parallel thinning algorithm. Commun. ACM 30, 156–160 (1987)CrossRefGoogle Scholar
  14. 14.
    Hall, R.W.: Fast parallel thinning algorithms: parallel speed and connectivity preservation. Commun. ACM 32, 124–131 (1989)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rosenfeld, A.: Connectivity in digital images. J. ACM 17, 146–160 (1970)CrossRefGoogle Scholar
  16. 16.
    Nagendraprasad, M.V., Wang, P.S.P., Gupta, A.: Algorithms for thinning and Rethickening of binary images. In: Digital Signal Processing, vol 3, pp. 97–102. MIT Press (1993)Google Scholar
  17. 17.
    Couprie, M., Bertrand, G.: Asymmetric parallel 3D thinning scheme and algorithm based on isthumes. Pattern Recogn. Lett. 76, 22–31 (2016)CrossRefGoogle Scholar
  18. 18.
    Jin, D., Iyer, K.S., Chen, C., Hoffman, E.A., Suha, P.K.: A robust and efficient curve skeletonization algorithm for tree like objects using minimum cost paths. Pattern Recogn. Lett. 76, 32–46 (2016)CrossRefGoogle Scholar
  19. 19.
    Pavlidis, T.: A thinning algorithm for discrete binary images. J. Comput. Graph. Image Process. 13, 142–157 (1980)CrossRefGoogle Scholar
  20. 20.
    Saha, P.K., Borgefors, G., di Baja, G.S.: A survey on skeletonization algorithms and applications. Pattern Recogn. Lett. 76, 3–12 (2016)CrossRefGoogle Scholar
  21. 21.
    Dang, W.: A fast parallel thinning algorithm for binary image skeletonization. Int. J. High Perform. Comput. Appl. 14, 65–81 (2000)CrossRefGoogle Scholar
  22. 22.
    Abu-Ain, T., Abdullah, S.N.H.S., Bataineh, B., Omar, K.: A fast and efficient thinning algorithm for binary images. J. ICT Res. Appl. 7, 205–216 (2013)CrossRefGoogle Scholar
  23. 23.
    Gramblicka, M., Vasky, J.: Comparison of thinning algorithms for vectorization of engineering drawings. J. Theor. Appl. Inf. Technol. 94(2), 265–275 (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.College of Engineering ChengannurUniversity of KeralaThiruvananthapuramIndia
  2. 2.LBS Institute of Technology for WomenUniversity of KeralaThiruvananthapuramIndia

Personalised recommendations