Advertisement

Real-Time Poultry Health Identification Using IoT Test Setup, Optimization and Results

  • Arun Gnana Raj AlexEmail author
  • Gnana Jayanthi JosephEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 968)

Abstract

Poultry industry needs a system to automate the process of identifying the hen is infected or not. We have proposed a system that uses IoT and sensors to analyze and identify the infected hen. This reduces the cost of labor and increase the accuracy of the identification process. In this paper we discuss about the overall system, audio and video analysis methods and comparing the results using Matlab. The process of sick identification has been optimized using the Matlab results.

Keywords

IoT Poultry automation Sick detection Sound analysis 

References

  1. 1.
    Jacob, J.P., Butcher, G.D., Mather, F.B., Miles, R.D.: Common poultry diseases. Animal Sciences Department, UF/IFAS Extension. April 2014. http://edis.ifas.ufl.edu
  2. 2.
    Du, Z., Jeong, M.K., Kong, S.G.: Band selection of hyperspectral images for automatic detection of poultry skin tumors. J. IEEE Trans. Autom. Sci. Eng. 4(3), 332–339 (2007).  https://doi.org/10.1109/tase.2006.888048CrossRefGoogle Scholar
  3. 3.
    Fujii, T., Yokoi, H., Tada, T., Suzuki, K., Tsukamoto, K.: Poultry tracking system with camera using particle filters. In: The IEEE International Conference on Robotics and Biomimetics, Bangkok, pp. 1888–1893 (2009).  https://doi.org/10.1109/robio.2009.4913289
  4. 4.
    Dogra, S., Chatterjee, S., Ray, R., Ghosh, S., Bhattacharya, D., Sarkar, S.K.: A novel proposal for detection of avian influenza and managing poultry in a cost efficient way implementing RFID. In: 2010 International Conference on Advances in Recent Technologies in Communication and Computing, Kottayam, pp. 111–115 (2010).  https://doi.org/10.1109/artcom.2010.48
  5. 5.
    Okada, H., Suzuki, K., Kenji, T., Itoh, T.: Avian influenza surveillance system in poultry farms using wireless sensor network. In: 2010 Symposium on Design Test Integration and Packaging of MEMS/MOEMS (DTIP), Seville, pp. 253–258 (2010)Google Scholar
  6. 6.
    Chansud, W., Wisanmongkol, J., Ketprom, U.: RFID for poultry traceability system at animal checkpoint. In: 2008 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Krabi, pp. 753–756 (2008).  https://doi.org/10.1109/ecticon.2008.4600540
  7. 7.
    Laokok, S., Ketprom, U.: Web services with poultry traceability system. In: 2008 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Krabi, 2008, pp. 197–200.  https://doi.org/10.1109/ecticon.2008.4600406
  8. 8.
    Hu, S., Tan, J.: BioLogger: a wireless physiological sensing and logging system with applications in poultry science. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, pp. 4828–4831 (2009).  https://doi.org/10.1109/iembs.2009.5332674
  9. 9.
    Raj, A.A.G., Jayanthi, J.G.: IoT-based real-time poultry monitoring and health status identification. In: 2018 11th International Symposium on Mechatronics and Its Applications (ISMA), Sharjah, pp. 1–7 (2018).  https://doi.org/10.1109/isma.2018.8330139
  10. 10.
    Chachada, S., Kuo, C.C.J.: Environmental sound recognition: a survey. In: 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Kaohsiung, pp. 1–9 (2013).  https://doi.org/10.1109/apsipa.2013.6694338
  11. 11.
    Chu, S., Narayanan, S., Kuo, C.C.J.: Environmental sound recognition with time-frequency audio features. IEEE Trans. Audio Speech Lang. Process. 17(6), 1142–1158 (2009).  https://doi.org/10.1109/TASL.2009.2017438CrossRefGoogle Scholar
  12. 12.
    Carroll, B.T., Anderson, D.V., Daley, W., Harbert, S., Britton, D.F., Jackwood, M.W.: Detecting symptoms of diseases in poultry through audio signal processing. In: 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Atlanta, GA, pp. 1132–1135 (2014).  https://doi.org/10.1109/globalsip.2014.7032298
  13. 13.
    Murugappan, M.: Human emotion classification using wavelet transform and KNN. In: 2011 International Conference on Pattern Analysis and Intelligence Robotics, Putrajaya, pp. 148–153 (2011).  https://doi.org/10.1109/icpair.2011.5976886
  14. 14.
    Chinmayi, R., Nair, G.J., Soundarya, M., Poojitha, D.S., Venugopal, G., Vijayan, J.: Extracting the features of emotion from EEG signals and classify using affective computing. In: 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, pp. 2032–2036 (2017).  https://doi.org/10.1109/wispnet.2017.8300118

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceBharathiyar UniversityCoimbatoreIndia
  2. 2.Department of Computer ScienceRajah Serfoji Government CollegeThanjavurIndia

Personalised recommendations