Advertisement

Recovery of a Failed Antenna Element Using Genetic Algorithm and Particle Swarm Optimization for MELISSA

  • Shweta VincentEmail author
  • Sharmila Anand John Francis
  • Om Prakash Kumar
  • Kumudha Raimond
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 968)

Abstract

A 2 × 6 planar coaxial cavity horn antenna array has been proposed for the transmitter module of the MELISSA GB-SAR system [7]. This system is installed in Italy for monitoring of land deformations leading to landslides and is required to work round-the-clock for continuous monitoring. Failure of even a single antenna element in the transmitting or receiving module of this system could alter the radiation pattern of the system and could prove to be hazardous. This article performs a comparative analysis of the Genetic algorithm and Particle Swarm Optimization algorithm to recover the failed element in the 2 × 6 antenna array. The results of MatLab simulation prove that both the GA and PSO algorithms converge well to auto-recover the failed element.

Keywords

MELISSA GB-SAR Genetic algorithm Particle swarm optimization Dolph Chebyshev beamforming 

References

  1. 1.
    Tarchi, D., Oliveri, F., Sammartino, P.F.: MIMO radar and ground-based SAR imaging systems: equivalent approaches for remote sensing. IEEE Trans. Geosci. Remote Sens. 51(1), 425–435 (2013)CrossRefGoogle Scholar
  2. 2.
    Broussolle, J., et al.: MELISSA, a new class of ground based InSAR system. An example of application in support to the Costa Concordia emergency. ISPRS J. Photogrammetry Remote Sens. 91, 50–58 (2014)CrossRefGoogle Scholar
  3. 3.
    Vincent, S., Francis, S.A.J., Rajsingh, E.B.: An alternate antenna array geometry for a GB-SAR system used in landslide monitoring. J. Indian Soc. Remote Sens. 43(3), 761–768 (2015)CrossRefGoogle Scholar
  4. 4.
    Vincent, S., Francis, S.A.J., Kumar, O.P., Rajsingh, E.B.: A comparative study of horn antennas suitable for the transmitting antenna array module of melissa architecture. In: Proceedings of the International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER - 2016), 13–14 August 2016. IEEE-Xplore Digital Library, Surathkal (2016)Google Scholar
  5. 5.
    Vincent, S., Francis, S.A.J., Kumar, O.P., Rajsingh, E.B.: Design of a planar antenna array for the transmitting module of MELISSA. Int. J. Appl. Eng. Res. 12(1), 179–184 (2017)Google Scholar
  6. 6.
    Vincent, S., Francis, S.A.J., Kumar, O.P., Rajsingh, E.B.: Optimization of gain and return loss of a 2 × 6 planar coaxial cavity horn antenna array for MELISSA. In: Proceedings of 2017 IEEE International Conference on Antenna Innovations and Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM - 2017) held in Bangalore, India in Novemeber 2017. IEEE-Xplore Digital Library (2017)Google Scholar
  7. 7.
    Vincent, S., Francis, S.A.J., Kumar, O.P., Raimond, K.: A comparative performance evaluation of beamforming techniques for a 2 × 6 coaxial cavity horn antenna array for MELISSA. In: Ray, K., Sharan, S., Rawat, S., Jain, S., Srivastava, S., Bandyopadhyay, A. (eds.) Engineering Vibration, Communication and Information Processing. Lecture Notes in Electrical Engineering, vol. 478, pp. 65–74. Springer, Singapore (2019).  https://doi.org/10.1007/978-981-13-1642-5_6CrossRefGoogle Scholar
  8. 8.
    Haupt, R.L.: Thin arrays using genetic algorithms. IEEE Trans. Antennas Propag. 42, 993–999 (1994)CrossRefGoogle Scholar
  9. 9.
    Yeo, B., Liu, Y.: Array failure correction with a Genetic Algorithm. IEEE Trans. Antennas Propag. 47(5), 823–828 (1999)CrossRefGoogle Scholar
  10. 10.
    Yan, K., Lu, Y.: Sidelobe reduction in Array-pattern synthesis using Genetic Algorithm. IEEE Trans. Antennas Propag. 45(7), 1117–1122 (1997)CrossRefGoogle Scholar
  11. 11.
    Rahman, S.U., Cao, Q.: Analysis of Linear Antenna Array for minimum side lobe level, half power beamwidth and nulls control using PSO. J. Microwave Optoelectron. Electromagnet. Appl. 16(2), 577–591 (2017)CrossRefGoogle Scholar
  12. 12.
    Han, C., Wang, L.: Array pattern synthesis using Particle Swarm Optimization with dynamic inertia weight. Int. J. Antennas Propag. Hindawi Publishers (2016). Article id 1829458Google Scholar
  13. 13.
    Goudos, S., Kalialakis, C., Mittra, R.: Evolutionary algorithms applied to antennas and propagation: a review of state of the art. Int. J. Antennas Propag. Hindawi Publishers (2016). Article id 1010459Google Scholar
  14. 14.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  15. 15.
    Banks, A., Vincent, J., Anyakoha, Ch.: A review of particle swarm optimization. Part I: Background Dev. Natural Comput. 6, 467–484 (2007)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shweta Vincent
    • 1
    Email author
  • Sharmila Anand John Francis
    • 2
  • Om Prakash Kumar
    • 3
  • Kumudha Raimond
    • 4
  1. 1.Department of Mechatronics EngineeringManipal Institute of Technology, MAHECoimbatoreIndia
  2. 2.Department of Computer Science EngineeringKing Khalid UniversityAbhaSaudi Arabia
  3. 3.Department of Electronics and Communication EngineeringManipal Institute of Technology, MAHECoimbatoreIndia
  4. 4.Department of Computer Science EngineeringCoimbatoreIndia

Personalised recommendations