A v-Hog Tensor Based Discriminant Analysis for Small Size Face Recognition

  • Belavadi BhaskarEmail author
  • K. V. Mahendra Prashanth
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 968)


Apart from Illumination, Pose and Expression variations, low dimension is also a primary concern that spiflicate the performance of face recognition system. This work distils to applying v-Hog Tensor discriminant analysis on small sized face image to yield good result in terms of correctness rate. Firstly the face image is mapped on to w-quintuple Colorspace to effectively interpret information existing in the image. Further discriminant features are extracted out of Tensor plane to bore on the confounded image due to reduction of image size. To exhibit the beauty of the feature, v-Hog [22] is adopted. The obtained features are further mapped to a lower dimension space for efficient face recognition. In this work the effect of fSVD [17] with bias is also considered to fortify the recognition system. Finally, for classification five different similarity measures are used to obtain an average correctness rate.


w-Quintuple Biased-fSVD v-Hog Tensor 


  1. 1.
    Ghinea, G., Kannan, R., Kannaiyan, S.: Gradient-orientation-based PCA subspace for novel face recognition. IEEE Access 2, 914–920 (2014)CrossRefGoogle Scholar
  2. 2.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)CrossRefGoogle Scholar
  3. 3.
    Zhang, D., Zhou, Z.-H.: (2D) 2PCA: two-directional two-dimensional PCA for efficient face representation and recognition. Neurocomputing 69(1), 224–231 (2005)CrossRefGoogle Scholar
  4. 4.
    Devi, B.J., Veeranjaneyulu, N., Kishore, K.V.K.: A novel face recognition system based on combining eigenfaces with fisher faces using wavelets. Procedia Comput. Sci. 2, 44–51 (2010)CrossRefGoogle Scholar
  5. 5.
    Wang, F., Wang, J., Zhang, C., Kwok, J.: Face recognition using spectral features. Pattern Recognit. 40(10), 2786–2797 (2007)CrossRefGoogle Scholar
  6. 6.
    Kang, C., Liao, S., Xiang, S., Pan, C.: Kernel sparse representation with pixel-level and region-level local feature kernels for face recognition. Neurocomputing 133, 141–152 (2014)CrossRefGoogle Scholar
  7. 7.
    Krisshna, N.L.A., Kadetotad Deepak, V., Manikantan, K., Ramachandran, S.: Face recognition using transform domain feature extraction and PSO-based feature selection. Appl. Soft Comput. 22, 141–161 (2014)CrossRefGoogle Scholar
  8. 8.
    Perez, C.A., Cament, L.A., Castillo, L.E.: Methodological improvement on local Gabor face recognition based on feature selection and enhanced Borda count. Pattern Recognit. 44(4), 951–963 (2011)CrossRefGoogle Scholar
  9. 9.
    Zhao, X., He, Z., Zhang, S., Kaneko, S., Satoh, Y.: Robust face recognition using the GAP feature. Pattern Recognit. 46(10), 2647–2657 (2013)CrossRefGoogle Scholar
  10. 10.
    Li, D., Tang, X., Pedrycz, W.: Face recognition using decimated redundant discrete wavelet transforms. Mach. Vis. Appl. 23(2), 391–401 (2012)CrossRefGoogle Scholar
  11. 11.
    Meng, J., Zhang, W.: Volume measure in 2DPCA-based face recognition. Pattern Recognit. Lett. 28(10), 1203–1208 (2007)CrossRefGoogle Scholar
  12. 12.
    Wang, Z., Sun, X.: Multiple kernel local Fisher discriminant analysis for face recognition. Signal Process. 93(6), 1496–1509 (2013)CrossRefGoogle Scholar
  13. 13.
    Sharma, P., Arya, K.V., Yadav, R.N.: Efficient face recognition using wavelet-based generalized neural network. Signal Process. 93(6), 1557–1565 (2013)CrossRefGoogle Scholar
  14. 14.
    Wu, S.: Quaternion-based improved LPP method for color face recognition. Opt. Int. J. Light. Electron Opt. 125(10), 2344–2349 (2014)CrossRefGoogle Scholar
  15. 15.
    Aifanti, N., Delopoulos, A.: Linear subspaces for facial expression recognition. Signal Process. Image Commun. 29(1), 177–188 (2014)CrossRefGoogle Scholar
  16. 16.
    Hu, H.: ICA-based neighborhood preserving analysis for face recognition. Comput. Vis. Image Underst. 112(3), 286–295 (2008)CrossRefGoogle Scholar
  17. 17.
    Bhaskar, B., Mahantesh, K., Geetha, G.P.: An investigation of fSVD and ridgelet transform for illumination and expression invariant face recognition. In: El-Alfy, E.-S.M., Thampi, S.M., Takagi, H., Piramuthu, S., Hanne, T. (eds.) Advances in Intelligent Informatics. AISC, vol. 320, pp. 31–38. Springer, Cham (2015). Scholar
  18. 18.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893 (2005)Google Scholar
  19. 19.
    Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: Principal component analysis of image gradient orientations for face recognition. In: IEEE International Conference on Automatic Face and Gesture Recognition and Workshops (FG 2011), pp. 553–558, March 2011Google Scholar
  20. 20.
    Yang, J., et al.: Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 131–137 (2004)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Torres, L., Reutter, J.-Y., Lorente, L.: The importance of the color information in face recognition. In: Proceedings of the 1999 International Conference on Image Processing, ICIP 1999, vol. 3. IEEE (1999)Google Scholar
  22. 22.
    Belavadi, B., Mahendra Prashanth, K.V.: An exploration of v-HOG on w-Quartette space for multi face recognition issues. In: Sa, P.K., Sahoo, M.N., Murugappan, M., Wu, Y., Majhi, B. (eds.) Progress in Intelligent Computing Techniques: Theory, Practice, and Applications. AISC, vol. 518, pp. 219–226. Springer, Singapore (2018). Scholar
  23. 23.
    Wang, D., Wang, X., Kong, S.: Integration of multi-feature fusion and dictionary learning for face recognition. Image Vis. Comput. 31(12), 895–904 (2013)CrossRefGoogle Scholar
  24. 24.
    Hou, Y.-F., Pei, W.-J., Chong, Y.-W., Zheng, C.-H.: Eigenface-based sparse representation for face recognition. In: Huang, D.-S., Jo, K.-H., Zhou, Y.-Q., Han, K. (eds.) ICIC 2013. LNCS (LNAI), vol. 7996, pp. 457–465. Springer, Heidelberg (2013). Scholar
  25. 25.
    Bhaskar, B., Anushree, P.S., Divya Shree, S., Mahendra Prashanth, K.V.: Quantitative analysis of kernel principal components and kernel fishers based face recognition algorithms using hybrid gaborlets. Procedia Comput. Sci. 58, 342–347 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.SJB Institute of Technology, Affiliated to VTUBengaluruIndia

Personalised recommendations