Advertisement

Metalenses and Meta-mirrors

  • Xiangang LuoEmail author
Chapter

Abstract

Lenses are the fundamental optical components and play the key roles in most of the optical systems, including cameras, microscopes, telescopes, projective lithographic machines, and spectrometers. Traditional lenses are made from materials such as glass or plastic and are polished or molded to desired shapes. However, the traditional refractive/reflective or diffractive lenses have their intrinsic limits in integration, weight, chromatic aberration, among others. The newly emerging metalenses may be promising alternatives to overcome these limits for practical applications. In this chapter, we will start with a brief review of the traditional lens in Sect. 9.1. Then, the design methods of the planar metalens and meta-mirror in EO 2.0 are introduced in Sect. 9.2. In Sects. 9.3 and 9.4, planar lenses with large numerical aperture (NA) and wide field of view, which are extremely difficult to realize in traditional optics with compact volume, are discussed in detail. Important technologies and the latest developments in metalenses, including achromatic or super-chromatic imaging, and tunable imaging, are elaborated and highlighted in Sects. 9.5 and 9.6. At last, we also give a brief introduction of nonlinear metalens in Sect. 9.7.

Keywords

Flat optics Flat lens Snell’s law Active lens 

References

  1. 1.
  2. 2.
    Objective lens system of Olympus E-30 DSLR Camera. https://commons.wikimedia.org/wiki/File:E-30-Cutmodel.jpg
  3. 3.
    M. Totzeck, W. Ulrich, A. Göhnermeier, W. Kaiser, Pushing deep ultraviolet lithography to its limits. Nat. Photon. 1, 629 (2007)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    G. Andersen, D. Tullson, Broadband antihole photon sieve telescope. Appl. Opt. 46, 3706–3708 (2007)CrossRefGoogle Scholar
  6. 6.
  7. 7.
    G. Cao, X. Gan, H. Lin, B. Jia, An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory. Opto-Electron. Adv. 1, 180012 (2018)Google Scholar
  8. 8.
    S. Wang, X. Ouyang, Z. Feng, Y. Cao, M. Gu, X. Li, Diffractive photonic applications mediated by laser reduced graphene oxides. Opto-Electron. Adv. 1, 170002 (2018)Google Scholar
  9. 9.
    H. Shi, C. Wang, C. Du, X. Luo, X. Dong, H. Gao, Beam manipulating by metallic nano-slits with variant widths. Opt. Express 13, 6815–6820 (2005)CrossRefGoogle Scholar
  10. 10.
    T. Xu, C. Wang, C. Du, X. Luo, Plasmonic beam deflector. Opt. Express 16, 4753–4759 (2008)CrossRefGoogle Scholar
  11. 11.
    L. Bourke, R.J. Blaikie, Genetic algorithm optimization of grating coupled near-field interference lithography systems at extreme numerical apertures. J. Opt. 19, 095003 (2017)CrossRefGoogle Scholar
  12. 12.
    P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, X. Luo, Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Appl. Phys. Lett. 106, 093110 (2015)CrossRefGoogle Scholar
  13. 13.
    M. Pu, Y. Guo, X. Li, X. Ma, X. Luo, Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018)CrossRefGoogle Scholar
  14. 14.
    T. Xu, C. Du, C. Wang, X. Luo, Subwavelength imaging by metallic slab lens with nanoslits. Appl. Phys. Lett. 91, 201501 (2007)CrossRefGoogle Scholar
  15. 15.
    L. Verslegers, P.B. Catrysse, Z. Yu, J.S. White, E.S. Barnard, M.L. Brongersma, S. Fan, Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett. 9, 235–238 (2008)CrossRefGoogle Scholar
  16. 16.
    S. Ishii, V.M. Shalaev, A.V. Kildishev, Holey-metal lenses: sieving single modes with proper phases. Nano Lett. 13, 159–163 (2012)CrossRefGoogle Scholar
  17. 17.
    Y. Chen, C. Zhou, X. Luo, C. Du, Structured lens formed by a 2D square hole array in a metallic film. Opt. Lett. 33, 753–755 (2008)CrossRefGoogle Scholar
  18. 18.
    J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, J. Tian, Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces. Adv. Funct. Mater. 25, 704–710 (2015)CrossRefGoogle Scholar
  19. 19.
    K. Huang, H. Liu, F.J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, C.-W. Qiu, Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat. Commun. 6, 7059 (2015)Google Scholar
  20. 20.
    L. Kipp, M. Skibowski, R.L. Johnson, R. Berndt, R. Adelung, S. Harm, R. Seemann, Sharper images by focusing soft X-rays with photon sieves. Nature 414, 184–188 (2001)CrossRefGoogle Scholar
  21. 21.
    H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L.P. Hariri, D.C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, M.J. Suter, Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photon. 12, 540–547 (2018)CrossRefGoogle Scholar
  22. 22.
    E. Arbabi, A. Arbabi, S.M. Kamali, Y. Horie, A. Faraon, Multiwavelength metasurfaces through spatial multiplexing. Sci. Rep. 6, 32803 (2016)CrossRefGoogle Scholar
  23. 23.
    Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, J.-W. Dong, Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging. Phys. Rev. Appl. 10, 014005 (2018)CrossRefGoogle Scholar
  24. 24.
    A. She, S. Zhang, S. Shian, D.R. Clarke, F. Capasso, Large area metalenses: design, characterization, and mass manufacturing. Opt. Express 26, 1573–1585 (2018)CrossRefGoogle Scholar
  25. 25.
    M. Khorasaninejad, A.Y. Zhu, C. Roques-Carmes, W.T. Chen, J. Oh, I. Mishra, R.C. Devlin, F. Capasso, Polarization-insensitive metalenses at visible wavelengths. Nano Lett. 16, 7229–7234 (2016)CrossRefGoogle Scholar
  26. 26.
    X. Luo, Principles of electromagnetic waves in metasurfaces. Sci. China Phys. Mech. Astron. 58, 594201 (2015)CrossRefGoogle Scholar
  27. 27.
    X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, Dual-polarity plasmonic metalens for visible light. Nat. Commun. 3, 1198 (2012)CrossRefGoogle Scholar
  28. 28.
    X. Chen, M. Chen, M.Q. Mehmood, D. Wen, F. Yue, C.-W. Qiu, S. Zhang, Longitudinal multifoci metalens for circularly polarized light. Adv. Opt. Mater. 3, 1201–1206 (2015)CrossRefGoogle Scholar
  29. 29.
    F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, X. Luo, All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions. Adv. Funct. Mater. 27, 1704295 (2018)CrossRefGoogle Scholar
  30. 30.
    M. Khorasaninejad, W.T. Chen, A.Y. Zhu, J. Oh, R.C. Devlin, D. Rousso, F. Capasso, Multispectral chiral imaging with a metalens. Nano Lett. 16, 4595–4600 (2016)CrossRefGoogle Scholar
  31. 31.
    X. Xie, X. Li, M. Pu, X. Ma, K. Liu, Y. Guo, X. Luo, Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Adv. Funct. Mater. 28, 1706673 (2018)CrossRefGoogle Scholar
  32. 32.
    M. Khorasaninejad, W.T. Chen, R.C. Devlin, J. Oh, A.Y. Zhu, F. Capasso, Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016)CrossRefGoogle Scholar
  33. 33.
    M. Pu, P. Chen, C. Wang, Y. Wang, Z. Zhao, C. Hu, C. Huang, X. Luo, Broadband anomalous reflection based on gradient low-Q meta-surface. AIP Adv. 3, 052136 (2013)CrossRefGoogle Scholar
  34. 34.
    X. Li, S. Xiao, B. Cai, Q. He, T.J. Cui, L. Zhou, Flat metasurfaces to focus electromagnetic waves in reflection geometry. Opt. Lett. 37, 4940–4942 (2012)CrossRefGoogle Scholar
  35. 35.
    M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, X. Luo, Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Appl. Phys. Lett. 102, 131906 (2013)CrossRefGoogle Scholar
  36. 36.
    A. Pors, M.G. Nielsen, R.L. Eriksen, S.I. Bozhevolnyi, Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett. 13, 829–834 (2013)CrossRefGoogle Scholar
  37. 37.
    A.B. Klemm, D. Stellinga, E.R. Martins, L. Lewis, G. Huyet, L. O’Faolain, T.F. Krauss, Experimental high numerical aperture focusing with high contrast gratings. Opt. Lett. 38, 3410–3413 (2013)CrossRefGoogle Scholar
  38. 38.
    A. Arbabi, Y. Horie, A.J. Ball, M. Bagheri, A. Faraon, Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015)CrossRefGoogle Scholar
  39. 39.
    W.T. Chen, A.Y. Zhu, M. Khorasaninejad, Z.J. Shi, V. Sanjeev, F. Capasso, Immersion meta-lenses at visible wavelengths for nanoscale imaging. Nano Lett. 17, 3188–3194 (2017)CrossRefGoogle Scholar
  40. 40.
    H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T.F. Krauss, J. Li, Ultrahigh numerical aperture metalens at visible wavelengths. Nano Lett. 18, 4460–4466 (2018)CrossRefGoogle Scholar
  41. 41.
    R. Paniagua-Domínguez, Y.F. Yu, E. Khaidarov, S. Choi, V. Leong, R.M. Bakker, X. Liang, Y.H. Fu, V. Valuckas, L.A. Krivitsky, A.I. Kuznetsov, A metalens with a near-unity numerical aperture. Nano Lett. 18, 2124–2132 (2018)CrossRefGoogle Scholar
  42. 42.
    F. Lu, F.G. Sedgwick, V. Karagodsky, C. Chase, C.J. Chang-Hasnain, Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings. Opt. Express 18, 12606–12614 (2010)CrossRefGoogle Scholar
  43. 43.
    F. Aieta, P. Genevet, M. Kats, F. Capasso, Aberrations of flat lenses and aplanatic metasurfaces. Opt. Express 21, 31530–31539 (2013)CrossRefGoogle Scholar
  44. 44.
    A. Kalvach, Z. Szabó, Aberration-free flat lens design for a wide range of incident angles. J. Opt. Soc. Am. B 33, A66–A71 (2016)CrossRefGoogle Scholar
  45. 45.
    J. Hunt, T. Tyler, S. Dhar, Y.-J. Tsai, P. Bowen, S. Larouche, N.M. Jokerst, D.R. Smith, Planar, flattened Luneburg lens at infrared wavelengths. Opt. Express 20, 1706–1713 (2012)CrossRefGoogle Scholar
  46. 46.
    F. Zhang, M. Pu, J. Luo, H. Yu, X. Luo, Symmetry breaking of photonic spin-orbit interactions in metasurfaces. Opto-Electron. Eng. 44, 319–325 (2017)Google Scholar
  47. 47.
    H. Ma, T. Cui, Three-dimensional broadband and broad-angle transformation-optics lens. Nat. Commun. 1, 124 (2010)CrossRefGoogle Scholar
  48. 48.
    W.X. Jiang, C.-W. Qiu, T.C. Han, Q. Cheng, H.F. Ma, S. Zhang, T.J. Cui, Broadband all-dielectric magnifying lens for far-field high-resolution imaging. Adv. Mater. 25, 6963–6968 (2013)CrossRefGoogle Scholar
  49. 49.
    Y.-Y. Zhao, Y.-L. Zhang, M.-L. Zheng, X.-Z. Dong, X.-M. Duan, Z.-S. Zhao, Three-dimensional Luneburg lens at optical frequencies. Laser Photonics Rev. 10, 665–672 (2016)CrossRefGoogle Scholar
  50. 50.
    A. Arbabi, E. Arbabi, S.M. Kamali, Y. Horie, S. Han, A. Faraon, Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016)CrossRefGoogle Scholar
  51. 51.
    C. Sun, Shrinking the camera size. Nat. Mater. 16, 11 (2016)CrossRefGoogle Scholar
  52. 52.
    B. Groever, W.T. Chen, F. Capasso, Meta-Lens doublet in the visible region. Nano Lett. 17, 4902–4907 (2017)CrossRefGoogle Scholar
  53. 53.
    T. Gissibl, S. Thiele, A. Herkommer, H. Giessen, Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photon. 10, 554–560 (2016)CrossRefGoogle Scholar
  54. 54.
  55. 55.
    M. Pu, X. Li, Y. Guo, X. Ma, X. Luo, Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Opt. Express 25, 31471–31477 (2017)CrossRefGoogle Scholar
  56. 56.
    X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, X. Luo, Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv. 2, e1601102 (2016)CrossRefGoogle Scholar
  57. 57.
    Y. Li, X. Li, L. Chen, M. Pu, J. Jin, M. Hong, X. Luo, Orbital angular momentum multiplexing and demultiplexing by a single metasurface. Adv. Opt. Mater. 5, 1600502 (2017)CrossRefGoogle Scholar
  58. 58.
    X. Li, M. Pu, Y. Wang, X. Ma, Y. Li, H. Gao, Z. Zhao, P. Gao, C. Wang, X. Luo, Dynamic control of the extraordinary optical scattering in semicontinuous 2D metamaterials. Adv. Opt. Mater. 4, 659–663 (2016)CrossRefGoogle Scholar
  59. 59.
    X. Li, M. Pu, Z. Zhao, X. Ma, J. Jin, Y. Wang, P. Gao, X. Luo, Catenary nanostructures as compact Bessel beam generators. Sci. Rep. 6, 20524 (2016)CrossRefGoogle Scholar
  60. 60.
    M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, X. Luo, Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015)CrossRefGoogle Scholar
  61. 61.
    W. Liu, Z. Li, H. Cheng, C. Tang, J. Li, S. Zhang, S. Chen, J. Tian, Metasurface enabled wide-angle fourier lens. Adv. Mater. 30, 1706368 (2018)CrossRefGoogle Scholar
  62. 62.
    Y. Guo, X. Ma, M. Pu, X. Li, Z. Zhao, X. Luo, High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens. Adv. Opt. Mater. 6, 1800592 (2018)CrossRefGoogle Scholar
  63. 63.
    Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, X. Luo, Achromatic flat optical components via compensation between structure and material dispersions. Sci. Rep. 6, 19885 (2016)CrossRefGoogle Scholar
  64. 64.
    Z. Zhao, M. Pu, H. Gao, J. Jin, X. Li, X. Ma, Y. Wang, P. Gao, X. Luo, Multispectral optical metasurfaces enabled by achromatic phase transition. Sci. Rep. 5, 15781 (2015)CrossRefGoogle Scholar
  65. 65.
    K. Li, Y. Guo, M. Pu, X. Li, X. Ma, Z. Zhao, X. Luo, Dispersion controlling meta-lens at visible frequency. Opt. Express 25, 21419–21427 (2017)CrossRefGoogle Scholar
  66. 66.
    O. Avayu, E. Almeida, Y. Prior, T. Ellenbogen, Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun. 8, 14992 (2017)CrossRefGoogle Scholar
  67. 67.
    P. Venugopalan, Q. Zhang, X. Li, L. Kuipers, M. Gu, Focusing dual-wavelength surface plasmons to the same focal plane by a far-field plasmonic lens. Opt. Lett. 39, 5744–5747 (2014)CrossRefGoogle Scholar
  68. 68.
    O. Eisenbach, O. Avayu, R. Ditcovski, T. Ellenbogen, Metasurfaces based dual wavelength diffractive lenses. Opt. Express 23, 3928–3936 (2015)CrossRefGoogle Scholar
  69. 69.
    Z.-L. Deng, S. Zhang, G.P. Wang, Wide-angled off-axis achromatic metasurfaces for visible light. Opt. Express 24, 23118–23128 (2016)CrossRefGoogle Scholar
  70. 70.
    M. Khorasaninejad, F. Aieta, P. Kanhaiya, M.A. Kats, P. Genevet, D. Rousso, F. Capasso, Achromatic metasurface lens at telecommunication wavelengths. Nano Lett. 15, 5358–5362 (2015)CrossRefGoogle Scholar
  71. 71.
    F. Aieta, M.A. Kats, P. Genevet, F. Capasso, Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015)CrossRefGoogle Scholar
  72. 72.
    M. Khorasaninejad, Z. Shi, A.Y. Zhu, W.T. Chen, V. Sanjeev, A. Zaidi, F. Capasso, Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 17, 1819–1824 (2017)CrossRefGoogle Scholar
  73. 73.
    S. Wang, J. Lai, T. Wu, C. Chen, J. Sun, Wide-band achromatic flat focusing lens based on all-dielectric subwavelength metasurface. Opt. Express 25, 7121–7130 (2017)CrossRefGoogle Scholar
  74. 74.
    S. Wang, P.C. Wu, V.-C. Su, Y.-C. Lai, C.H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, D.P. Tsai, Broadband achromatic optical metasurface devices. Nat. Commun. 8, 187 (2017)CrossRefGoogle Scholar
  75. 75.
    H.H. Hsiao, H. Chen Yu, J. Lin Ren, C. Wu Pin, S. Wang, H. Chen Bo, P. Tsai Din, Integrated resonant unit of metasurfaces for broadband efficiency and phase manipulation. Adv. Opt. Mater. 6, 1800031 (2018)Google Scholar
  76. 76.
    W.T. Chen, A.Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso, A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220 (2018)CrossRefGoogle Scholar
  77. 77.
    S. Wang, P.C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H.Y. Kuo, B.H. Chen, Y.H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, D.P. Tsai, A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227 (2018)CrossRefGoogle Scholar
  78. 78.
    A. Nemati, Q. Wang, M. Hong, J. Teng, Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv. 1, 180009 (2018)CrossRefGoogle Scholar
  79. 79.
    S. Song, X. Ma, M. Pu, X. Li, K. Liu, P. Gao, Z. Zhao, Y. Wang, C. Wang, X. Luo, Actively tunable structural color rendering with tensile substrate. Adv. Opt. Mater. 5, 1600829 (2017)CrossRefGoogle Scholar
  80. 80.
    H.-S. Ee, R. Agarwal, Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett. 16, 2818–2823 (2016)CrossRefGoogle Scholar
  81. 81.
    S.M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, A. Faraon, Highly tunable elastic dielectric metasurface lenses. Laser Photonics Rev. 10, 1062 (2016)CrossRefGoogle Scholar
  82. 82.
    L.W. Alvarez, Two-element variable-power spherical lens. US Patent, US3305294A (1967)Google Scholar
  83. 83.
    A. Zhan, S. Colburn, C.M. Dodson, A. Majumdar, Metasurface freeform nanophotonics. Sci. Rep. 7, 1673 (2017)CrossRefGoogle Scholar
  84. 84.
    C. Min, P. Wang, X. Jiao, Y. Deng, H. Ming, Beam manipulating by metallic nano-optic lens containing nonlinear media. Opt. Express 15, 9541–9546 (2007)CrossRefGoogle Scholar
  85. 85.
    M.A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M.M. Qazilbash, D.N. Basov, S. Ramanathan, F. Capasso, Ultra-thin perfect absorber employing a tunable phase change material. Appl. Phys. Lett. 101, 221101 (2012)CrossRefGoogle Scholar
  86. 86.
    M.A. Kats, R. Blanchard, P. Genevet, Z. Yang, M.M. Qazilbash, D.N. Basov, S. Ramanathan, F. Capasso, Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. Opt. Lett. 38, 368–370 (2013)CrossRefGoogle Scholar
  87. 87.
    Y. Chen, X. Li, X. Luo, S.A. Maier, M. Hong, Tunable near-infrared plasmonic perfect absorber based on phase-change materials. Photon. Res. 3, 54–57 (2015)CrossRefGoogle Scholar
  88. 88.
    Y. Chen, X. Li, Y. Sonnefraud, A.I. Fernandez-Dominguez, X. Luo, M. Hong, S.A. Maier, Engineering the phase front of light with phase-change material based planar lenses. Sci. Rep. 5, 8860 (2015)CrossRefGoogle Scholar
  89. 89.
    Y.G. Chen, T.S. Kao, B. Ng, X. Li, X.G. Luo, B. Luk’yanchuk, S.A. Maier, M.H. Hong, Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. Opt. Express 21, 13691–13698 (2013)CrossRefGoogle Scholar
  90. 90.
    V.K. Mkhitaryan, D.S. Ghosh, M. Rudé, J. Canet-Ferrer, R.A. Maniyara, K.K. Gopalan, V. Pruneri, Tunable complete optical absorption in multilayer structures including Ge2Sb2Te5 without lithographic patterns. Adv. Opt. Mater. 5, 1600452 (2016)CrossRefGoogle Scholar
  91. 91.
    T. Li, L. Huang, J. Liu, Y. Wang, T. Zentgraf, Tunable wave plate based on active plasmonic metasurfaces. Opt. Express 25, 4216–4226 (2017)CrossRefGoogle Scholar
  92. 92.
    C.H. Chu, M.L. Tseng, J. Chen, P.C. Wu, Y.-H. Chen, H.-C. Wang, T.-Y. Chen, W.T. Hsieh, H.J. Wu, G. Sun, D.P. Tsai, Active dielectric metasurface based on phase-change medium. Laser Photonics Rev. 10, 986–994 (2016)CrossRefGoogle Scholar
  93. 93.
    Q. Wang, E.T.F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, N.I. Zheludev, Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon. 10, 60–65 (2016)CrossRefGoogle Scholar
  94. 94.
    N. Raeis-Hosseini, J. Rho, Metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices. Materials 10, 1046 (2017)CrossRefGoogle Scholar
  95. 95.
    A.M. Shaltout, A.V. Kildishev, V.M. Shalaev, Evolution of photonic metasurfaces: from static to dynamic. J. Opt. Soc. Am. B 33, 501–510 (2016)CrossRefGoogle Scholar
  96. 96.
    H.-X. Xu, S. Sun, S. Tang, S. Ma, Q. He, G.-M. Wang, T. Cai, H.-P. Li, L. Zhou, Dynamical control on helicity of electromagnetic waves by tunable metasurfaces. Sci. Rep. 6, 27503 (2016)CrossRefGoogle Scholar
  97. 97.
    B.O. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, Y. Feng, Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface. Sci. Rep. 4, 4971 (2014)CrossRefGoogle Scholar
  98. 98.
    J. Zhao, Q. Cheng, J. Chen, M.Q. Qi, W.X. Jiang, T.J. Cui, A tunable metamaterial absorber using varactor diodes. New J. Phys. 15, 043049 (2013)CrossRefGoogle Scholar
  99. 99.
    X. Wu, C. Hu, Y. Wang, M. Pu, C. Huang, C. Wang, X. Luo, Active microwave absorber with the dual-ability of dividable modulation in absorbing intensity and frequency. AIP Adv. 3, 022114 (2013)CrossRefGoogle Scholar
  100. 100.
    D.F. Sievenpiper, J.H. Schaffner, H.J. Song, R.Y. Loo, G. Tangonan, Two-dimensional beam steering using an electrically tunable impedance surface. IEEE Trans. Antennas Propag. 51, 2713–2722 (2003)CrossRefGoogle Scholar
  101. 101.
    K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, C.-W. Qiu, A reconfigurable active Huygens’ metalens. Adv. Mater. 29, 1606422 (2017)CrossRefGoogle Scholar
  102. 102.
    H.T. Chen, J.F. O’Hara, A.K. Azad, A.J. Taylor, R.D. Averitt, D.B. Shrekenhamer, W.J. Padilla, Experimental demonstration of frequency-agile terahertz metamaterials. Nat. Photon. 2, 295–298 (2008)CrossRefGoogle Scholar
  103. 103.
    H.T. Chen, W.J. Padilla, J.M.O. Zide, A.C. Gossard, A.J. Taylor, R.D. Averitt, Active terahertz metamaterial devices. Nature 444, 597–600 (2006)CrossRefGoogle Scholar
  104. 104.
    O. Balci, E.O. Polat, N. Kakenov, C. Kocabas, Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 6, 6628 (2015)CrossRefGoogle Scholar
  105. 105.
    Z. Fang, Y. Wang, A.E. Schlather, Z. Liu, P.M. Ajayan, F.J. García de Abajo, P. Nordlander, X. Zhu, N.J. Halas, Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett. 14, 299–304 (2014)CrossRefGoogle Scholar
  106. 106.
    W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, Y.R. Shen, Ultrafast all-optical graphene modulator. Nano Lett. 14, 955–959 (2014)CrossRefGoogle Scholar
  107. 107.
    E. Arbabi, A. Arbabi, S.M. Kamali, Y. Horie, M. Faraji-Dana, A. Faraon, MEMS-tunable dielectric metasurface lens. Nat. Commun. 9, 812 (2018)CrossRefGoogle Scholar
  108. 108.
    A. She, S. Zhang, S. Shian, D.R. Clarke, F. Capasso, Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 4, eaap9957 (2018)Google Scholar
  109. 109.
    M. Rahmani, G. Leo, I. Brener, A. Zayats, S. Maier, C. De Angelis, H. Tan, V.F. Gili, F. Karouta, R. Oulton, Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto-Electron. Adv. 1, 180021 (2018)CrossRefGoogle Scholar
  110. 110.
    M. Kauranen, A.V. Zayats, Nonlinear plasmonics. Nat. Photon. 6, 737–748 (2012)CrossRefGoogle Scholar
  111. 111.
    S. Chen, G. Li, W. Cheah Kok, T. Zentgraf, S. Zhang, Controlling the phase of optical nonlinearity with plasmonic metasurfaces. Nanophotonics 7, 1013–1024 (2018)Google Scholar
  112. 112.
    N. Segal, S. Keren-Zur, N. Hendler, T. Ellenbogen, Controlling light with metamaterial-based nonlinear photonic crystals. Nat. Photonics 9, 180–184 (2015)CrossRefGoogle Scholar
  113. 113.
    E. Almeida, G. Shalem, Y. Prior, Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces. Nat. Commun. 7, 10367 (2016)CrossRefGoogle Scholar
  114. 114.
    J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alu, M.A. Belkin, Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 511, 65–69 (2014)CrossRefGoogle Scholar
  115. 115.
    M. Tymchenko, J.S. Gomez-Diaz, J. Lee, N. Nookala, M.A. Belkin, A. Alù, Gradient nonlinear pancharatnam-berry metasurfaces. Phys. Rev. Lett. 115, 207403 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina

Personalised recommendations