Advertisement

Sub-Diffraction-Limited Telescopies

  • Xiangang LuoEmail author
Chapter

Abstract

Telescopy is one of the most important applications in engineering optics. In order to improve the observation ability, the optical aperture of telescopes is becoming much larger, which has nearly reached the state-of-the-art technique limit. Sub-diffraction-limited telescopies, which have improved observation ability without enlarging the size of the telescopes, are pursued for a long time. In this chapter, two kinds of sub-diffraction-limited telescopies are introduced for EO 2.0. First, a brief introduction of the telescopy in EO 1.0 is given. Then in Sect. 8.2, we introduce the telescopy based on the super-oscillation in detail. Super-oscillation telescopy with dielectric pupil filter (DPF), metasurfaces, as well as achromatic super-oscillation telescopy are discussed. In Sect. 8.3, a review on another super-resolution telescopy based on orbital angular momentum is presented.

Keywords

Optical telescope Sub-diffraction-limited Super-oscillation 

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    X. Luo, Principles of electromagnetic waves in metasurfaces. Sci. China. Phys. Mech. Astron. 58, 594201 (2015)CrossRefGoogle Scholar
  6. 6.
    E.H.K. Stelzer, S. Grill, The uncertainty principle applied to estimate focal spot dimensions. Opt. Commun. 173, 51–56 (2000)CrossRefGoogle Scholar
  7. 7.
    J.Y. Wang, J.K. Markey, Modal compensation of atmospheric turbulence phase distortion. J. Opt. Soc. Am. 68, 78–87 (1978)CrossRefGoogle Scholar
  8. 8.
    M. Tegmark, M. Zaldarriaga, Fast fourier transform telescope. Phys. Rev. D 79, 083530 (2009)CrossRefGoogle Scholar
  9. 9.
    A.B. Meinel, Aperture synthesis using independent telescopes. Appl. Opt. 9, 2501–2504 (1970)CrossRefGoogle Scholar
  10. 10.
    L.W. Chen, Y. Zhou, M.X. Wu, M.H. Hong, Remote-mode microsphere nano-imaging: new boundaries for optical microscopes. Opto-Electron. Adv. 1, 170001 (2018)Google Scholar
  11. 11.
    J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)CrossRefGoogle Scholar
  12. 12.
    H. Gao, M. Pu, X. Li, X. Ma, Z. Zhao, Y. Guo, X. Luo, Super-resolution imaging with a Bessel lens realized by a geometric metasurface. Opt. Express 25, 13933–13943 (2017)CrossRefGoogle Scholar
  13. 13.
    C. Snoeyink, Imaging performance of bessel beam microscopy. Opt. Lett. 38, 2550–2553 (2013)CrossRefGoogle Scholar
  14. 14.
    S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994)CrossRefGoogle Scholar
  15. 15.
    B. Huang, W. Wang, M. Bates, X. Zhuang, Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008)CrossRefGoogle Scholar
  16. 16.
    E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, H.F. Hess, Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006)CrossRefGoogle Scholar
  17. 17.
    G.T. Di Francia, Super-gain antennas and optical resolving power. Il Nuovo. Cimento. 9, 426–438 (1952)CrossRefGoogle Scholar
  18. 18.
    M. Martı́nez-Corral, P. Andrés, C.J. Zapata-Rodrı́guez, M. Kowalczyk, Three-dimensional superresolution by annular binary filters. Opt. Commun. 165, 267–278 (1999)Google Scholar
  19. 19.
    M.V. Berry, S. Popescu, Evolution of quantum superoscillations and optical superresolution without evanescent waves. J. Phys. A: Math. Gen. 39, 6965 (2006)CrossRefGoogle Scholar
  20. 20.
    E.T.F. Rogers, J. Lindberg, T. Roy, S. Savo, J.E. Chad, M.R. Dennis, N.I. Zheludev, A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater. 11, 432–435 (2012)CrossRefGoogle Scholar
  21. 21.
    C. Hao, Z. Nie, H. Ye, H. Li, Y. Luo, R. Feng, X. Yu, F. Wen, Y. Zhang, C. Yu, J. Teng, B. Luk’yanchuk, C-W. Qiu, Three-dimensional supercritical resolved light-induced magnetic holography. Sci. Adv. 3, e1701398 (2017)Google Scholar
  22. 22.
    F. Qin, K. Huang, J. Wu, J. Teng, C.W. Qiu, M. Hong, A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance. Adv. Mater. 29, 1602721 (2016)CrossRefGoogle Scholar
  23. 23.
    Y. Eliezer, L. Hareli, L. Lobachinsky, S. Froim, A. Bahabad, Breaking the temporal resolution limit by superoscillating optical beats. Phys. Rev. Lett. 119, 043903 (2017)CrossRefGoogle Scholar
  24. 24.
    G. Yuan, E.T.F. Rogers, T. Roy, Z. Shen, N.I. Zheludev, Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50 nm resolution. Opt. Express 22, 6428–6437 (2014)CrossRefGoogle Scholar
  25. 25.
    F.M. Huang, T.S. Kao, V.A. Fedotov, Y. Chen, N.I. Zheludev, Nanohole array as a lens. Nano. Lett. 8, 2469–2472 (2008)CrossRefGoogle Scholar
  26. 26.
    F.M. Huang, N.I. Zheludev, Super-resolution without evanescent waves. Nano. Lett. 9, 1249–1254 (2009)CrossRefGoogle Scholar
  27. 27.
    K. Huang, H. Ye, J. Teng, S.P. Yeo, B. Luk’yanchuk, C.W. Qiu, Optimization-free superoscillatory lens using phase and amplitude masks. Laser. Photonics. Rev. 8, 152–157 (2014)CrossRefGoogle Scholar
  28. 28.
    A.M.H. Wong, G.V. Eleftheriades, An optical super-microscope for far-field, real-time imaging beyond the diffraction limit. Sci. Rep. 3, 1715 (2013)CrossRefGoogle Scholar
  29. 29.
    S. Kosmeier, M. Mazilu, J. Baumgartl, K. Dholakia, Enhanced two-point resolution using optical eigenmode optimized pupil functions. J. Opt. 13, 105707 (2011)CrossRefGoogle Scholar
  30. 30.
    J. Baumgartl, S. Kosmeier, M. Mazilu, E.T.F. Rogers, N.I. Zheludev, K. Dholakia, Far field subwavelength focusing using optical eigenmodes. Appl. Phys. Lett. 98, 181109 (2011)CrossRefGoogle Scholar
  31. 31.
    C. Wang, D. Tang, Y. Wang, Z. Zhao, J. Wang, M. Pu, Y. Zhang, W. Yan, P. Gao, X. Luo, Super-resolution optical telescopes with local light diffraction shrinkage. Sci. Rep. 5, 18485 (2015)CrossRefGoogle Scholar
  32. 32.
    H. Liu, Y. Yan, Q. Tan, G. Jin, Theories for the design of diffractive superresolution elements and limits of optical superresolution. J. Opt. Soc. Am. A 19, 2185–2193 (2002)CrossRefGoogle Scholar
  33. 33.
    W.K. Pratt, F. Davarian, Fast computational techniques for pseudoinverse and wiener image restoration. IEEE Trans. Comput. C 26, 571–580 (1977)Google Scholar
  34. 34.
    M. Born, E. Wolf, Principle of Optics, 7th edn. (Pergamon, Oxford, UK, 2007)Google Scholar
  35. 35.
    Z. Li, T. Zhang, Y. Wang, W. Kong, J. Zhang, Y. Huang, C. Wang, X. Li, M. Pu, X. Luo, Achromatic broadband super-resolution imaging by super-oscillatory metasurface. Laser. Photonics. Rev. 12, 1800064 (2018)CrossRefGoogle Scholar
  36. 36.
    M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, X. Luo, Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015)CrossRefGoogle Scholar
  37. 37.
    D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, X. Luo, Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photonics Rev. 9, 713–719 (2015)CrossRefGoogle Scholar
  38. 38.
    X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, X. Luo, Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv. 2, e1601102 (2016)CrossRefGoogle Scholar
  39. 39.
    X. Li, M. Pu, Z. Zhao, X. Ma, J. Jin, Y. Wang, P. Gao, X. Luo, Catenary nanostructures as compact bessel beam generators. Sci. Rep. 6, 20524 (2016)CrossRefGoogle Scholar
  40. 40.
    L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.W. Cheah, C.W. Qiu, J. Li, T. Zentgraf, S. Zhang, Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013)CrossRefGoogle Scholar
  41. 41.
    M. Khorasaninejad, W.T. Chen, R.C. Devlin, J. Oh, A.Y. Zhu, F. Capasso, Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016)CrossRefGoogle Scholar
  42. 42.
    J. Lin, S. Wu, X. Li, C. Huang, X. Luo, Design and numerical analyses of ultrathin plasmonic lens for subwavelength focusing by phase discontinuities of nanoantenna arrays. Appl. Phys. Express 6, 022004 (2013)CrossRefGoogle Scholar
  43. 43.
    G. Yuan, E.T.F. Rogers, T. Roy, G. Adamo, Z. Shen, N.I. Zheludev, Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths. Sci. Rep. 4, 6333 (2014)CrossRefGoogle Scholar
  44. 44.
    H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, C.T. Chong, Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat. Photon. 2, 501–505 (2008)CrossRefGoogle Scholar
  45. 45.
    Q. Zhan, Properties of circularly polarized vortex beams. Opt. Lett. 31, 867–869 (2006)CrossRefGoogle Scholar
  46. 46.
    G.M. Lerman, U. Levy, Effect of radial polarization and apodization on spot size under tight focusing conditions. Opt. Express 16, 4567–4581 (2008)CrossRefGoogle Scholar
  47. 47.
    F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, M. Hong, Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light. Sci. Rep. 5, 9977 (2015)CrossRefGoogle Scholar
  48. 48.
    G.A. Swartzlander, Peering into darkness with a vortex spatial filter. Opt. Lett. 26, 497–499 (2001)CrossRefGoogle Scholar
  49. 49.
    F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, C. Barbieri, Overcoming the Rayleigh criterion limit with optical vortices. Phys. Rev. Lett. 97, 163903 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina

Personalised recommendations