Advertisement

Super-resolution Microscopy

  • Xiangang LuoEmail author
Chapter

Abstract

Optical microscopy is one of the most important scientific instruments in the history of mankind. It has revolutionized the field of life sciences and remains indispensable in many areas of scientific research. However, the resolution of the optical microscopy could not be enhanced infinitely through improving the amplification factor and eliminating the aberration due to the optical diffraction from a limited aperture in optical imaging system, and there exists a theoretical limit, which is named as diffraction limit. Essentially, this is attributed to the loss of high spatial frequencies that contain the details of an object. Although spatial or temporal manipulation of fluorescence microscopy has been demonstrated as an avenue of super-resolution microscopy, they require special labeling of the samples. With the development of subwavelength structured materials, superlens- and hyperlens-based super-resolution microscopies have been proposed for both intensity- and phase-contrast imaging. Furthermore, inspired by the dielectric microsphere-based photonic nanojets and far-field super-oscillation phenomena, new super-resolution microscopies have also been proposed, forming one important research direction of EO 2.0.

Keywords

Microscopy Super-resolution Superlens Hyperlens 

References

  1. 1.
    E. Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Für Mikrosk. Anat. 9, 413–418 (1873)CrossRefGoogle Scholar
  2. 2.
    E.H. Synge, XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region. Lond. Edinb. Dublin Philos. Mag. J. Sci. 6, 356–362 (1928)Google Scholar
  3. 3.
    E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, Near field scanning optical microscopy (NSOM): development and biophysical applications. Biophys. J. 49, 269–279 (1986)CrossRefGoogle Scholar
  4. 4.
    E. Betzig, J.K. Trautman, Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257, 189–195 (1992)CrossRefGoogle Scholar
  5. 5.
    E. Betzig, R.J. Chichester, Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1425 (1993)CrossRefGoogle Scholar
  6. 6.
    F. Lu, W. Zhang, L. Huang, S. Liang, D. Mao, F. Gao, T. Mei, J. Zhao, Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip. Opto-Electron. Adv. 1, 180010 (2018)Google Scholar
  7. 7.
    S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994)CrossRefGoogle Scholar
  8. 8.
    M. Saxena, G. Eluru, S.S. Gorthi, Structured illumination microscopy. Adv. Opt. Photonics 7, 241–275 (2015)CrossRefGoogle Scholar
  9. 9.
    T. Horio, H. Hotani, Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 321, 605 (1986)CrossRefGoogle Scholar
  10. 10.
    S. Chowdhury, A.-H. Dhalla, J. Izatt, Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples. Biomed. Opt. Express 3, 1841–1854 (2012)CrossRefGoogle Scholar
  11. 11.
    K. Carlsson, P.E. Danielsson, R. Lenz, A. Liljeborg, L. Majlöf, N. Åslund, Three-dimensional microscopy using a confocal laser scanning microscope. Opt. Lett. 10, 53–55 (1985)CrossRefGoogle Scholar
  12. 12.
    M.J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006)CrossRefGoogle Scholar
  13. 13.
    E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, H.F. Hess, Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642 (2006)CrossRefGoogle Scholar
  14. 14.
    S.T. Hess, T.P.K. Girirajan, M.D. Mason, Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006)CrossRefGoogle Scholar
  15. 15.
    Y.M. Sigal, R. Zhou, X. Zhuang, Visualizing and discovering cellular structures with super-resolution microscopy. Science 361, 880 (2018)CrossRefGoogle Scholar
  16. 16.
    L.-W. Chen, Y. Zhou, M.-X. Wu, M. Hong, Remote-mode microsphere nano-imaging: new boundaries for optical microscopes. Opto-Electron. Adv. 1, 170001 (2018)Google Scholar
  17. 17.
    V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. USPEKHI 10, 509–514 (1968)CrossRefGoogle Scholar
  18. 18.
    X. Zhang, Z. Liu, Superlenses to overcome the diffraction limit. Nat. Mater. 7, 435 (2008)CrossRefGoogle Scholar
  19. 19.
    J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)CrossRefGoogle Scholar
  20. 20.
    J. Pendry, A. Holden, W. Stewart, I. Youngs, Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996)CrossRefGoogle Scholar
  21. 21.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)CrossRefGoogle Scholar
  22. 22.
    R. Shelby, D. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)CrossRefGoogle Scholar
  23. 23.
    H.J. Lezec, J.A. Dionne, H.A. Atwater, Negative refraction at visible frequencies. Science 316, 430 (2007)CrossRefGoogle Scholar
  24. 24.
    T. Xu, A. Agrawal, M. Abashin, K.J. Chau, H.J. Lezec, All-angle negative refraction and active flat lensing of ultraviolet light. Nature 497, 470–474 (2013)CrossRefGoogle Scholar
  25. 25.
    H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, X. Zhang, Realization of optical superlens imaging below the diffraction limit. New J. Phys. 7 (2005)Google Scholar
  26. 26.
    S.A. Ramakrishna, J.B. Pendry, D. Schurig, D.R. Smith, S. Schultz, The asymmetric lossy near-perfect lens. J. Mod. Opt. 49, 1747–1762 (2002)CrossRefGoogle Scholar
  27. 27.
    X. Luo, T. Ishihara, Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 84, 4780–4782 (2004)CrossRefGoogle Scholar
  28. 28.
    N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)CrossRefGoogle Scholar
  29. 29.
    T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, Near-field microscopy through a SiC superlens. Science 313, 1595 (2006)CrossRefGoogle Scholar
  30. 30.
    M. Fehrenbacher, S. Winnerl, H. Schneider, J. Döring, S.C. Kehr, L.M. Eng, Y. Huo, O.G. Schmidt, K. Yao, Y. Liu, M. Helm, Plasmonic superlensing in doped GaAs. Nano Lett. 15, 1057–1061 (2015)CrossRefGoogle Scholar
  31. 31.
    Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, X. Zhang, Far-field optical superlens. Nano Lett. 7, 403–408 (2007)CrossRefGoogle Scholar
  32. 32.
    Y. Xiong, Z. Liu, C. Sun, X. Zhang, Two-dimensional Imaging by far-field superlens at visible wavelengths. Nano Lett. 7, 3360–3365 (2007)CrossRefGoogle Scholar
  33. 33.
    T. Xu, H.J. Lezec, Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial. Nat. Commun. 5, 4141 (2014)CrossRefGoogle Scholar
  34. 34.
    H. Liu, Y. Luo, W. Kong, K. Liu, W. Du, C. Zhao, P. Gao, Z. Zhao, C. Wang, M. Pu, X. Luo, Large area deep subwavelength interference lithography with a 35 nm half-period based on bulk plasmon polaritons. Opt. Mater. Express 8, 199–209 (2018)CrossRefGoogle Scholar
  35. 35.
    B. Wood, J.B. Pendry, D.P. Tsai, Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B 74, 115116 (2006)CrossRefGoogle Scholar
  36. 36.
    C. Wang, P. Gao, X. Tao, Z. Zhao, M. Pu, P. Chen, X. Luo, Far field observation and theoretical analyses of light directional imaging in metamaterial with stacked metal-dielectric films. Appl. Phys. Lett. 103, 31911 (2013)CrossRefGoogle Scholar
  37. 37.
    A. Salandrino, N. Engheta, Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B 74 (2006)Google Scholar
  38. 38.
    I.I. Smolyaninov, Y.-J. Hung, C.C. Davis, Magnifying superlens in the visible frequency range. Science 315, 1699–1701 (2007)CrossRefGoogle Scholar
  39. 39.
    Z. Jacob, L.V. Alekseyev, E. Narimanov, Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006)CrossRefGoogle Scholar
  40. 40.
    L. Liu, K. Liu, Z. Zhao, C. Wang, P. Gao, X. Luo, Sub-diffraction demagnification imaging lithography by hyperlens with plasmonic reflector layer. RSC Adv. 6, 95973–95978 (2016)CrossRefGoogle Scholar
  41. 41.
    J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, X. Zhang, Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat. Commun. 1, 143 (2010)CrossRefGoogle Scholar
  42. 42.
    D. Lee, Y.D. Kim, M. Kim, S. So, H.-J. Choi, J. Mun, D.M. Nguyen, T. Badloe, J.G. Ok, K. Kim, H. Lee, J. Rho, Realization of wafer-scale hyperlens device for sub-diffractional biomolecular imaging. ACS Photonics 5, 2549–2554 (2018)CrossRefGoogle Scholar
  43. 43.
    Y. Xiong, Z. Liu, X. Zhang, A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm. Appl. Phys. Lett. 94, 203108 (2009)CrossRefGoogle Scholar
  44. 44.
    W. Wang, H. Xing, L. Fang, Y. Liu, J. Ma, L. Lin, C. Wang, X. Luo, Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial. Opt. Express 16, 21142–21148 (2008)CrossRefGoogle Scholar
  45. 45.
    B.H. Cheng, Y.Z. Ho, Y.C. Lan, D.P. Tsai, Optical hybrid-superlens hyperlens for superresolution imaging. IEEE J. Sel. Top. Quantum Electron. 19, 4601305 (2013)CrossRefGoogle Scholar
  46. 46.
    B.H. Cheng, Y.-C. Lan, D.P. Tsai, Breaking optical diffraction limitation using optical hybrid-super-hyperlens with radially polarized light. Opt. Express 21, 14898–14906 (2013)CrossRefGoogle Scholar
  47. 47.
    X. Tao, C. Wang, Z. Zhao, Y. Wang, N. Yao, X. Luo, A method for uniform demagnification imaging beyond the diffraction limit: cascaded planar hyperlens. Appl. Phys. B 114, 545–550 (2014)CrossRefGoogle Scholar
  48. 48.
    F. Zernike, Luneburg lens for optical waveguide use. Opt. Commun. 12, 379–381 (1974)CrossRefGoogle Scholar
  49. 49.
    N. Yao, C. Wang, X. Tao, Y. Wang, Z. Zhao, X. Luo, Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure. Nanotechnology 24, 135203 (2013)CrossRefGoogle Scholar
  50. 50.
    L. Wang, C. Vasilev, D.P. Canniffe, L.R. Wilson, C.N. Hunter, A.J. Cadby, Highly confined surface imaging by solid immersion total internal reflection fluorescence microscopy. Opt. Express 20, 3311–3324 (2012)CrossRefGoogle Scholar
  51. 51.
    D.S. Johnson, J.K. Jaiswal, S. Simon, Total internal reflection fluorescence (TIRF) microscopy illuminator for improved imaging of cell surface events. Curr. Protoc. Cytom. 61, 12.29.1–12.29.19 (2012)Google Scholar
  52. 52.
    D. Axelrod, Total internal reflection fluorescence microscopy in cell biology. Traffic 2, 764–774 (2001)CrossRefGoogle Scholar
  53. 53.
    B. Rothenhäusler, W. Knoll, Surface plasmon microscopy. Nature 332, 615 (1988)CrossRefGoogle Scholar
  54. 54.
    G. Stabler, M.G. Somekh, C.W. See, High-resolution wide-field surface plasmon microscopy. J. Microsc. 214, 328–333 (2004)CrossRefGoogle Scholar
  55. 55.
    K. Watanabe, K. Matsuura, F. Kawata, K. Nagata, J. Ning, H. Kano, Scanning and non-scanning surface plasmon microscopy to observe cell adhesion sites. Biomed. Opt. Express 3, 354–359 (2012)CrossRefGoogle Scholar
  56. 56.
    J.S. Shumaker-Parry, C.T. Campbell, Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy. Anal. Chem. 76, 907–917 (2004)CrossRefGoogle Scholar
  57. 57.
    B. Huang, F. Yu, R.N. Zare, Surface plasmon resonance imaging using a high numerical aperture microscope objective. Anal. Chem. 79, 2979–2983 (2007)CrossRefGoogle Scholar
  58. 58.
    B.K. Singh, A.C. Hillier, Surface plasmon resonance imaging of biomolecular interactions on a grating-based sensor array. Anal. Chem. 78, 2009–2018 (2006)CrossRefGoogle Scholar
  59. 59.
    W. Kong, W. Du, K. Liu, C. Wang, L. Liu, Z. Zhao, X. Luo, Launching deep subwavelength bulk plasmon polaritons through hyperbolic metamaterials for surface imaging with a tuneable ultra-short illumination depth. Nanoscale 8, 17030–17038 (2016)CrossRefGoogle Scholar
  60. 60.
    W. Kong, W. Du, K. Liu, H. Liu, Z. Zhao, M. Pu, C. Wang, X. Luo, Surface imaging microscopy with tunable penetration depth as short as 20 nm by employing hyperbolic metamaterials. J. Mater. Chem. C 6, 1797–1805 (2018)CrossRefGoogle Scholar
  61. 61.
    Z. Chen, A. Taflove, V. Backman, Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt. Express 12, 1214–1220 (2004)CrossRefGoogle Scholar
  62. 62.
    S. Lecler, Y. Takakura, P. Meyrueis, Properties of a three-dimensional photonic jet. Opt. Lett. 30, 2641–2643 (2005)CrossRefGoogle Scholar
  63. 63.
    A. Heifetz, K. Huang, A.V. Sahakian, X. Li, A. Taflove, V. Backman, Experimental confirmation of backscattering enhancement induced by a photonic jet. Appl. Phys. Lett. 89, 221118 (2006)CrossRefGoogle Scholar
  64. 64.
    H. Guo, Y. Han, X. Weng, Y. Zhao, G. Sui, Y. Wang, S. Zhuang, Near-field focusing of the dielectric microsphere with wavelength scale radius. Opt. Express 21, 2434–2443 (2013)CrossRefGoogle Scholar
  65. 65.
    E. Mcleod, C.B. Arnold, Subwavelength direct-write nanopatterning using optically trapped microspheres. Nat. Nano 3, 413–417 (2008)CrossRefGoogle Scholar
  66. 66.
    G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, M. Hong, Super-long photonic nanojet generated from liquid-filled hollow microcylinder. Opt. Lett. 40, 625–628 (2015)CrossRefGoogle Scholar
  67. 67.
    Y. Shen, L.V. Wang, J.-T. Shen, Ultralong photonic nanojet formed by a two-layer dielectric microsphere. Opt. Lett. 39, 4120–4123 (2014)CrossRefGoogle Scholar
  68. 68.
    S.-C. Kong, A. Taflove, V. Backman, Quasi one-dimensional light beam generated by a graded-index microsphere. Opt. Express 17, 3722–3731 (2009)CrossRefGoogle Scholar
  69. 69.
    Z. Hengyu, C. Zaichun, C.T. Chong, H. Minghui, Photonic jet with ultralong working distance by hemispheric shell. Opt. Express 23, 6626–6633 (2015)CrossRefGoogle Scholar
  70. 70.
    M.X. Wu, B.J. Huang, R. Chen, Y. Yang, J.F. Wu, R. Ji, X.D. Chen, M.H. Hong, Modulation of photonic nanojets generated by microspheres decorated with concentric rings. Opt. Express 23, 20096–20103 (2015)CrossRefGoogle Scholar
  71. 71.
    M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, M. Hong, Super-focusing of center-covered engineered microsphere. Sci. Rep. 6, 31637 (2016)CrossRefGoogle Scholar
  72. 72.
    Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, M. Hong, Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun. 2, 218 (2011)Google Scholar
  73. 73.
    H. Yang, R. Trouillon, G. Huszka, M.A.M. Gijs, Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet. Nano Lett. 16, 4862–4870 (2016)CrossRefGoogle Scholar
  74. 74.
    A. Darafsheh, C. Guardiola, A. Palovcak, J.C. Finlay, A. Cárabe, Optical super-resolution imaging by high-index microspheres embedded in elastomers. Opt. Lett. 40, 5 (2015)CrossRefGoogle Scholar
  75. 75.
    A. Darafsheh, N.I. Limberopoulos, J.S. Derov, D.E. Walker, V.N. Astratov, Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies. Appl. Phys. Lett. 104, 61117 (2014)CrossRefGoogle Scholar
  76. 76.
    J.N. Monks, B. Yan, N. Hawkins, F. Vollrath, Z. Wang, Spider silk: mother nature’s bio-superlens. Nano Lett. 16, 5842–5845 (2016)CrossRefGoogle Scholar
  77. 77.
    G.T. di Francia, Super-gain antennas and optical resolving power. G Suppl. Nuovo Cimento 9, 426–438 (1952)CrossRefGoogle Scholar
  78. 78.
    Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)CrossRefGoogle Scholar
  79. 79.
    X. Luo, D. Tsai, M. Gu, M. Hong, Subwavelength interference of light on structured surfaces. Adv. Opt. Photonics 10, 757–842 (2018)CrossRefGoogle Scholar
  80. 80.
    D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, X. Luo, Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photonics Rev. 9, 713–719 (2015)Google Scholar
  81. 81.
    Z. Li, T. Zhang, Y. Wang, W. Kong, J. Zhang, Y. Huang, C. Wang, X. Li, M. Pu, X. Luo, Achromatic broadband super-resolution imaging by super-oscillatory metasurface. Laser Photonics Rev. 12, 1800064 (2018)CrossRefGoogle Scholar
  82. 82.
    E.T.F. Rogers, J. Lindberg, T. Roy, S. Savo, J.E. Chad, M.R. Dennis, N.I. Zheludev, A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater. 11, 432–435 (2012)CrossRefGoogle Scholar
  83. 83.
    F. Qin, H. Kun, J. Wu, J. Teng, C. Qiu, M. Hong, A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance. Adv. Mater. 29, 1602721 (2017)CrossRefGoogle Scholar
  84. 84.
    G. Cao, X. Gan, H. Lin, B. Jia, An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory. Opto-Electron. Adv. 1, 180012 (2018)Google Scholar
  85. 85.
    S. Wang, X. Ouyang, Z. Feng, Y. Cao, M. Gu, X. Li, Diffractive photonic applications mediated by laser reduced graphene oxides. Opto-Electron. Adv. 1, 170002 (2018)Google Scholar
  86. 86.
    C. Snoeyink, Imaging performance of Bessel beam microscopy. Opt. Lett. 38, 2550–2553 (2013)CrossRefGoogle Scholar
  87. 87.
    S.W. Hell, Far-field optical nanoscopy. Science 316, 1153 (2007)CrossRefGoogle Scholar
  88. 88.
    H. Gao, M. Pu, X. Li, X. Ma, Z. Zhao, Y. Guo, X. Luo, Super-resolution imaging with a Bessel lens realized by a geometric metasurface. Opt. Express 25, 13933–13943 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina

Personalised recommendations