Numerical Modeling and Intelligent Designs

  • Xiangang LuoEmail author


The material basis of EO 2.0 is subwavelength structured materials, which possess many intriguing electromagnetic properties that do not exist in nature. The complicated physical mechanisms that describe these light–matter interactions at the nanoscale often cannot be explained by conventional macroscopic theories. Therefore, new analysis and numerical simulation methods must be exploited to give an accurate prediction of the optical performance. Furthermore, since there are so many design freedoms in subwavelength structured materials, traditional trial-and-error method suffers from low efficiency and locally optimized solution. Thanks to the rapid developments in big data and artificial intelligence, some scientific problems that classically require human perception or intricate mechanisms have recently been solved. The concept of design databases, e.g., materials database and inverse design database, has also been proposed. In this chapter, we present some frequently used modeling and optimizing methods of subwavelength structures and show the concept of artificial intelligent materials design platform.


Artificial intelligence Optimizing algorithm Transfer matrix method Gerchberg–Saxton algorithm 


  1. 1.
    B. Choudhury, Metamaterial Inspired Electromagnetic Applications (Springer, NY, 2017)Google Scholar
  2. 2.
    S. Molesky, Z. Lin, A.Y. Piggott, W. Jin, J. Vucković, A.W. Rodriguez, Inverse design in nanophotonics. Nat. Photon. 12, 659–670 (2018)Google Scholar
  3. 3.
    Y. Guo, M. Pu, Z. Zhao, Y. Wang, J. Jin, P. Gao, X. Li, X. Ma, X. Luo, Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photon. 3, 2022–2029 (2016)Google Scholar
  4. 4.
    X. Xie, X. Li, M. Pu, X. Ma, K. Liu, Y. Guo, X. Luo, Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Adv. Funct. Mater. 28, 1706673 (2018)Google Scholar
  5. 5.
    Y. Guo, L. Yan, W. Pan, B. Luo, Generation and manipulation of orbital angular momentum by all-dielectric metasurfaces. Plasmonics 11, 337–344 (2016)Google Scholar
  6. 6.
    Y. Wang, M. Pu, C. Hu, Z. Zhao, C. Wang, X. Luo, Dynamic manipulation of polarization states using anisotropic meta-surface. Opt. Commun. 319, 14–16 (2014)Google Scholar
  7. 7.
    M. Pu, X. Ma, X. Li, Y. Guo, X. Luo, Merging plasmonics and metamaterials by two-dimensional subwavelength structures. J. Mater. Chem. C 5, 4361–4378 (2017)Google Scholar
  8. 8.
    M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo, Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt. Express 19, 17413–17420 (2011)Google Scholar
  9. 9.
    M. Pu, C. Hu, C. Huang, C. Wang, Z. Zhao, Y. Wang, X. Luo, Investigation of Fano resonance in planar metamaterial with perturbed periodicity. Opt. Express 21, 992–1001 (2013)Google Scholar
  10. 10.
    Q. Feng, M. Pu, C. Hu, X. Luo, Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt. Lett. 37, 2133–2135 (2012)Google Scholar
  11. 11.
    Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, X. Luo, Catenary electromagnetics for ultrabroadband lightweight absorbers and large-scale flat antennas. Adv. Sci. 1801691 (2018)Google Scholar
  12. 12.
    X. Luo, D. Tsai, M. Gu, M. Hong, Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion. Chem. Soc. Rev. (2019)Google Scholar
  13. 13.
    H.E. Bussey, J.H. Richmond, Scattering by a lossy dielectric circular cylindrical multilayer, numerical values. IEEE Trans. Antennas Propag. 23, 723–725 (1975)Google Scholar
  14. 14.
    E.F. Knott, K. Langseth, Performance degradation of Jaumann absorbers due to curvature. IEEE Trans. Antennas Propag. 28, 137–139 (1980)Google Scholar
  15. 15.
    M.G. Moharam, T.K. Gaylord, Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. A 71, 811–818 (1981)Google Scholar
  16. 16.
    F. Capolino, Theory and Phenomena of Metamaterials (CRC Press, Boca Raton, 2009)Google Scholar
  17. 17.
    K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)Google Scholar
  18. 18.
    J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)Google Scholar
  19. 19.
  20. 20.
  21. 21.
    P. Silvester, High-order polynomial triangular finite elements for potential problems. Int. J. Eng. Sci. 7, 849–861 (1969)Google Scholar
  22. 22.
  23. 23.
    R.W. Gerchberg, W.O. Saxton, A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–250 (1972)Google Scholar
  24. 24.
    J. Kay, N.J. Kasdin, R. Belikov, Wavefront correction in a shaped-pupil coronagraph using a Gerchberg-Saxton-based estimation scheme. Proc. SPIE 6691, Astronomical Adaptive Optics Systems and Applications III, 66910D (2007)Google Scholar
  25. 25.
    B. Gu, G. Yang, On the phase retrieval problem in optical and electronic microscopy. Acta. Opt. Sin. 1, 517–552 (1981)Google Scholar
  26. 26.
    G. Yang, B. Gu, On the amplitude-phase retrieval problem in optical systems. Acta. Phys. Sin. 30, 410–413 (1981)Google Scholar
  27. 27.
    L. Sui, B. Liu, Q. Wang, Y. Li, J. Liang, Color image encryption by using Yang-Gu mixture amplitude-phase retrieval algorithm in gyrator transform domain and two-dimensional sine logistic modulation map. Opt. Lasers Eng. 75, 17–26 (2015)Google Scholar
  28. 28.
    G. Yang, B. Dong, B. Gu, J. Zhuang, O.K. Ersoy, Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison. Appl. Opt. 33, 209–218 (1994)Google Scholar
  29. 29.
    P.W.M. Tsang, T.-C. Poon, Y.M. Wu, Review of fast methods for point-based computer-generated holography. Photon. Res. 6, 837–846 (2018)Google Scholar
  30. 30.
    J.H. Holland, On quantifying agricultural and water management practices from low spatial resolution RS data using genetic algorithms: a numerical study for mixed pixel environment. Adv. Water Resour. 28, 856–870 (1975)Google Scholar
  31. 31.
    D.S. Weile, E. Michielssen, D.E. Goldberg, Genetic algorithm design of Pareto optimal broadband microwave absorbers. IEEE Trans. Electromagn. Compat. 38, 518–525 (1996)Google Scholar
  32. 32.
    K. Diest, Numerical Methods for Metamaterial Design (Springer, NY, 2013)Google Scholar
  33. 33.
    K. Huang, H. Liu, F.J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, C.-W. Qiu, Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat. Commun. 6, 7059 (2015)Google Scholar
  34. 34.
    J. Kennedy, R. Eberhart, Particle Swarm Optimization, in Proceedings of IEEE International Conference on Neural Networks (ICNN’95), (1995)Google Scholar
  35. 35.
    R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization. Swarm Intell. 1, 33–57 (2007)Google Scholar
  36. 36.
    M.R. Bonyadi, Z. Michalewicz, Particle swarm optimization for single objective continuous space problems: a review. Evol. Comput. 25, 1–54 (2016)Google Scholar
  37. 37.
  38. 38.
  39. 39.
    Z. Liu, D. Zhu, S.P. Rodrigues, K.-T. Lee, W. Cai, A generative model for the inverse design of metasurfaces. Nano Lett. 18, 6570–6576 (2018)Google Scholar
  40. 40.
    W. Ma, F. Cheng, Y. Liu, Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano 12, 6326–6334 (2018)Google Scholar
  41. 41.
    Y. Shen, N.C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, M. Soljačić, Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017)Google Scholar
  42. 42.
    X. Lin, Y. Rivenson, N.T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, A. Ozcan, All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018)Google Scholar
  43. 43.
    S. Wang, X. Ouyang, Z. Feng, Y. Cao, M. Gu, and X. Li, Diffractive photonic applications mediated by laser reduced graphene oxides. Opto-Electron. Adv. 1, 170002 (2018)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina

Personalised recommendations