Advertisement

Generation and Manipulation of Special Light Beams

  • Xiangang LuoEmail author
Chapter

Abstract

Special light beams satisfying the Helmholtz equation are of great importance in various applications ranging from high-resolution imaging, high data capacity optical communication to micromanipulation in EO 2.0. In this chapter, we summarize some typical special light beams emerging in recent decades and having attracted arising attentions. We especially review their generating and modulating methods with subwavelength structures, which are the core building blocks in EO 2.0. By suitably adjusting the shape, size, position, and orientation of the structures with high spatial resolution, one can control the basic properties of light (phase, amplitude, polarization) and thus engineer the beams’ wavefront profile at will. This possibility greatly expands the frontiers of optical engineering with attendant reduction of thickness, size, and complexity.

Keywords

Photonic spin Hall effect Vortex beam Bessel beam Airy beam 

References

  1. 1.
    A.M. Yao, M.J. Padgett, Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3, 161–204 (2011)CrossRefGoogle Scholar
  2. 2.
    A. Dudley, M. Lavery, M. Padgett, A. Forbes, Unraveling Bessel Beams. Opt. Photonics News 24, 22–29 (2013)CrossRefGoogle Scholar
  3. 3.
    K.Y. Bliokh, A. Aiello, Goos-Hanchen and Imbert-Fedorov beam shifts: an overview. J. Opt. 15, 014001 (2013)CrossRefGoogle Scholar
  4. 4.
    J.E. Hirsch, Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999)CrossRefGoogle Scholar
  5. 5.
    J. Sinova, D. Culcer, Q. Niu, N.A. Sinitsyn, T. Jungwirth, A.H. MacDonald, Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004)CrossRefGoogle Scholar
  6. 6.
    R.A. Beth, Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936)CrossRefGoogle Scholar
  7. 7.
    M. Onoda, S. Murakami, N. Nagaosa, Hall effect of light. Phys. Rev. Lett. 93, 083901 (2004)CrossRefGoogle Scholar
  8. 8.
    O. Hosten, P. Kwiat, Observation of the spin Hall effect of light via weak measurements. Science 319, 787–790 (2008)CrossRefGoogle Scholar
  9. 9.
    X. Ling, X. Zhao, K. Huang, Y. Liu, C.-W. Qiu, H. Luo, S. Wen, Recent advances in the spin Hall effect of light. Rep. Prog. Phys. 80, 066401 (2017)CrossRefGoogle Scholar
  10. 10.
    X. Yin, Z. Ye, J. Rho, Y. Wang, X. Zhang, Photonic spin Hall effect at metasurfaces. Science 339, 1405–1407 (2013)CrossRefGoogle Scholar
  11. 11.
    N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)CrossRefGoogle Scholar
  12. 12.
    R.H. Renard, Total reflection: a new evaluation of the Goos-Hänchen shift. J. Opt. Soc. Am. 54, 1190–1197 (1964)CrossRefGoogle Scholar
  13. 13.
    L. Li, C.W. Haggans, Convergence of the coupled-wave method for metallic lamellar diffraction gratings. J. Opt. Soc. Am. A 10, 1184–1189 (1993)CrossRefGoogle Scholar
  14. 14.
    N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, E. Hasman, Optical spin Hall effects in plasmonic chains. Nano Lett. 11, 2038–2042 (2011)CrossRefGoogle Scholar
  15. 15.
    X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, D. Fan, Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence. Light Sci. Appl. 4, e290 (2015)CrossRefGoogle Scholar
  16. 16.
    X. Luo, M. Pu, X. Li, X. Ma, Broadband spin Hall effect of light in single nanoapertures. Light Sci. Appl. 6, e16276 (2017)CrossRefGoogle Scholar
  17. 17.
    M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, X. Luo, Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015)CrossRefGoogle Scholar
  18. 18.
    T. Xu, C. Wang, C. Du, X. Luo, Plasmonic beam deflector. Opt. Express 16, 4753–4759 (2008)CrossRefGoogle Scholar
  19. 19.
    S. Franke-Arnold, L. Allen, M. Padgett, Advances in optical angular momentum. Laser Photonics Rev. 2, 299–313 (2008)CrossRefGoogle Scholar
  20. 20.
    L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992)CrossRefGoogle Scholar
  21. 21.
    N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A.E. Willner, S. Ramachandran, Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013)CrossRefGoogle Scholar
  22. 22.
    A.E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M.P.J. Lavery, M. Tur, S. Ramachandran, A.F. Molisch, N. Ashrafi, S. Ashrafi, Optical communications using orbital angular momentum beams. Adv. Opt. Photon. 7, 66–106 (2015)CrossRefGoogle Scholar
  23. 23.
    F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, C. Barbieri, Overcoming the Rayleigh criterion limit with optical vortices. Phys. Rev. Lett. 97, 163903 (2006)CrossRefGoogle Scholar
  24. 24.
    K. Dholakia, P. Reece, M. Gu, Optical micromanipulation. Chem. Soc. Rev. 37, 42–55 (2008)CrossRefGoogle Scholar
  25. 25.
    M.P.J. Lavery, F.C. Speirits, S.M. Barnett, M.J. Padgett, Detection of a spinning object using light’s orbital angular momentum. Science 341, 537–540 (2013)CrossRefGoogle Scholar
  26. 26.
    P. Genevet, N. Yu, F. Aieta, J. Lin, M.A. Kats, R. Blanchard, M.O. Scully, Z. Gaburro, F. Capasso, Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl. Phys. Lett. 100, 013101–013103 (2012)CrossRefGoogle Scholar
  27. 27.
    L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, S. Zhang, Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 12, 5750–5755 (2012)CrossRefGoogle Scholar
  28. 28.
    M.I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, N.M. Litchinitser, High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett. 15, 6261–6266 (2015)CrossRefGoogle Scholar
  29. 29.
    Y. Yang, W. Wang, P. Moitra, I.I. Kravchenko, D.P. Briggs, J. Valentine, Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14, 1394–1399 (2014)CrossRefGoogle Scholar
  30. 30.
    X. Wang, Z. Nie, Y. Liang, J. Wang, T. Li, B. Jia, Recent advances on optical vortex generation. Nanophotonics (2018)Google Scholar
  31. 31.
    J. Jin, J. Luo, X. Zhang, H. Gao, X. Li, M. Pu, P. Gao, Z. Zhao, X. Luo, Generation and detection of orbital angular momentum via metasurface. Sci. Rep. 6, 24286 (2016)Google Scholar
  32. 32.
    J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, X. Luo, Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial. Adv. Mater. Technol. 2016, 1600201 (2016)Google Scholar
  33. 33.
    K. Yang, M. Pu, X. Li, X. Ma, J. Luo, H. Gao, X. Luo, Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface. Nanoscale 8, 12267–12271 (2016)CrossRefGoogle Scholar
  34. 34.
    A. Niv, G. Biener, V. Kleiner, E. Hasman, Propagation-invariant vectorial Bessel beams obtained by use of quantized Pancharatnam-Berry phase optical elements. Opt. Lett. 29, 238–240 (2004)CrossRefGoogle Scholar
  35. 35.
    A. Niv, G. Biener, V. Kleiner, E. Hasman, Rotating vectorial vortices produced by space-variant subwavelength gratings. Opt. Lett. 30, 2933–2935 (2005)CrossRefGoogle Scholar
  36. 36.
    J. Sun, X. Wang, T. Xu, Z.A. Kudyshev, A.N. Cartwright, N.M. Litchinitser, Spinning light on the nanoscale. Nano Lett. 14, 2726–2729 (2014)CrossRefGoogle Scholar
  37. 37.
    Z.E. Bomzon, V. Kleiner, E. Hasman, Pancharatnam-Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt. Lett. 26, 1424–1426 (2001)Google Scholar
  38. 38.
    X. Li, X. Ma, X. Luo, Principles and applications of metasurfaces with phase modulation. Opto-Electron. Eng. 44, 255–275 (2017)Google Scholar
  39. 39.
    S. Chen, Z. Li, Y. Zhang, H. Cheng, J. Tian, Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics. Adv. Opt. Mater. 6, 1800104 (2018)CrossRefGoogle Scholar
  40. 40.
    X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, X. Luo, A planar chiral meta-surface for optical vortex generation and focusing. Sci. Rep. 5, 10365 (2015)CrossRefGoogle Scholar
  41. 41.
    H. Liu, M.Q. Mehmood, K. Huang, L. Ke, H. Ye, P. Genevet, M. Zhang, A. Danner, S.P. Yeo, C.-W. Qiu, J. Teng, Twisted focusing of optical vortices with broadband flat spiral zone plates. Adv. Opt. Mater. 2, 1193–1198 (2014)CrossRefGoogle Scholar
  42. 42.
    J. Zeng, L. Li, X. Yang, J. Gao, Generating and separating twisted light by gradient–rotation split-ring antenna metasurfaces. Nano Lett. 16, 3101–3108 (2016)CrossRefGoogle Scholar
  43. 43.
    H. Ren, X. Li, Q. Zhang, M. Gu, On-chip noninterference angular momentum multiplexing of broadband light. Science 352, 805–809 (2016)CrossRefGoogle Scholar
  44. 44.
    J. Lin, P. Genevet, M.A. Kats, N. Antoniou, F. Capasso, Nanostructured holograms for broadband manipulation of vector beams. Nano Lett. 13, 4269–4274 (2013)CrossRefGoogle Scholar
  45. 45.
    F. Yue, D. Wen, J. Xin, B.D. Gerardot, J. Li, X. Chen, Vector vortex beam generation with a single plasmonic metasurface. ACS Photonics 3, 1558–1563 (2016)CrossRefGoogle Scholar
  46. 46.
    Y. Li, X. Li, L. Chen, M. Pu, J. Jin, M. Hong, X. Luo, Orbital angular momentum multiplexing and demultiplexing by a single metasurface. Adv. Opt. Mater. 5, 1600502 (2017)CrossRefGoogle Scholar
  47. 47.
    C. Yan, X. Li, M. Pu, X. Ma, F. Zhang, P. Gao, Y. Guo, K. Liu, Z. Zhang, X. Luo, Generation of polarization-sensitive modulated optical vortices with all-dielectric metasurfaces. ACS Photonics (2019)Google Scholar
  48. 48.
    Y. Guo, M. Pu, Z. Zhao, Y. Wang, J. Jin, P. Gao, X. Li, X. Ma, X. Luo, Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photonics 3, 2022–2029 (2016)CrossRefGoogle Scholar
  49. 49.
    E. Hasman, V. Kleiner, G. Biener, A. Niv, Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics. Appl. Phys. Lett. 82, 328–330 (2003)CrossRefGoogle Scholar
  50. 50.
    G. Biener, A. Niv, V. Kleiner, E. Hasman, Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Opt. Lett. 27, 1875–1877 (2002)CrossRefGoogle Scholar
  51. 51.
    E. Brasselet, G. Gervinskas, G. Seniutinas, S. Juodkazis, Topological shaping of light by closed-path nanoslits. Phys. Rev. Lett. 111, 193901 (2013)CrossRefGoogle Scholar
  52. 52.
    Y. Guo, L. Yan, W. Pan, B. Luo, Generation and manipulation of orbit angular momentum by all-dielectric metasurfaces. Plasmonics 11, 337–344 (2016)Google Scholar
  53. 53.
    F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, X. Luo, All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions. Adv. Funct. Mater. 27, 1704295 (2018)CrossRefGoogle Scholar
  54. 54.
    J.P.B. Mueller, N.A. Rubin, R.C. Devlin, B. Groever, F. Capasso, Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017)Google Scholar
  55. 55.
    M. Khorasaninejad, F. Capasso, Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017)Google Scholar
  56. 56.
    F. Zhang, M. Pu, J. Luo, H. Yu, X. Luo, Symmetry breaking of photonic spin-orbit interactions in metasurfaces. Opto-Electron. Eng. 44, 319–325 (2017)Google Scholar
  57. 57.
    N. Engheta, Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317, 1698–1702 (2007)CrossRefGoogle Scholar
  58. 58.
    J. Durnin, Exact solutions for nondiffracting beams. I. The scalar theory. J. Opt. Soc. Am. A 4, 651–654 (1987)CrossRefGoogle Scholar
  59. 59.
    C. Snoeyink, S. Wereley, Single-image far-field subdiffraction limit imaging with axicon. Opt. Lett. 38, 625–627 (2013)CrossRefGoogle Scholar
  60. 60.
    J. Arlt, V. Garces-Chavez, W. Sibbett, K. Dholakia, Optical micromanipulation using a Bessel light beam. Opt. Commun. 197, 239–245 (2001)CrossRefGoogle Scholar
  61. 61.
    D. McGloin, V. Garcés-Chávez, K. Dholakia, Interfering Bessel beams for optical micromanipulation. Opt. Lett. 28, 657–659 (2003)CrossRefGoogle Scholar
  62. 62.
    R.M. Herman, T.A. Wiggins, Production and uses of diffractionless beams. J. Opt. Soc. Am. A 8, 932–942 (1991)CrossRefGoogle Scholar
  63. 63.
    T.A. Planchon, L. Gao, D.E. Milkie, M.W. Davidson, J.A. Galbraith, C.G. Galbraith, E. Betzig, Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Meth. 8, 417–423 (2011)CrossRefGoogle Scholar
  64. 64.
    D. McGloin, K. Dholakia, Bessel beams: diffraction in a new light. Contemp. Phys. 46, 15–28 (2005)CrossRefGoogle Scholar
  65. 65.
    Y. Meng, J. Yi, S.N. Burokur, L. Kang, H. Zhang, D.H. Werner, Phase-modulation based transmitarray convergence lens for vortex wave carrying orbital angular momentum. Opt. Express 26, 22019–22029 (2018)CrossRefGoogle Scholar
  66. 66.
    Z. Wang, S. Dong, W. Luo, M. Jia, Z. Liang, Q. He, S. Sun, L. Zhou, High-efficiency generation of Bessel beams with transmissive metasurfaces. Appl. Phys. Lett. 112, 191901 (2018)CrossRefGoogle Scholar
  67. 67.
    C. Pfeiffer, A. Grbic, Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 110, 197401 (2013)CrossRefGoogle Scholar
  68. 68.
    Z. Ma, S.M. Hanham, P. Albella, B. Ng, H.T. Lu, Y. Gong, S.A. Maier, M. Hong, Terahertz all-dielectric magnetic mirror metasurfaces. ACS Photonics 3, 1010–1018 (2016)CrossRefGoogle Scholar
  69. 69.
    F. Aieta, P. Genevet, M.A. Kats, N. Yu, R. Blanchard, Z. Gaburro, F. Capasso, Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932–4936 (2012)CrossRefGoogle Scholar
  70. 70.
    D. Lin, P. Fan, E. Hasman, M.L. Brongersma, Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014)CrossRefGoogle Scholar
  71. 71.
    W.T. Chen, M. Khorasaninejad, A.Y. Zhu, J. Oh, R.C. Devlin, A. Zaidi, F. Capasso, Generation of wavelength-independent subwavelength Bessel beams using metasurfaces. Light Sci. Appl. 6, e16259 (2017)CrossRefGoogle Scholar
  72. 72.
    Y. Zhu, D. Wei, Z. Kuang, Q. Wang, Y. Wang, X. Huang, Y. Zhang, M. Xiao, Broadband Variable meta-axicons based on nano-aperture arrays in a metallic film. Sci. Rep. 8, 11591 (2018)CrossRefGoogle Scholar
  73. 73.
    X. Li, M. Pu, Z. Zhao, X. Ma, J. Jin, Y. Wang, P. Gao, X. Luo, Catenary nanostructures as compact Bessel beam generators. Sci. Rep. 6, 20524 (2016)CrossRefGoogle Scholar
  74. 74.
    M.V. Berry, N.L. Balazs, Nonspreading wave packets. Am. J. Phys. 47, 264–267 (1979)CrossRefGoogle Scholar
  75. 75.
    G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Observation of accelerating Airy beams. Phys. Rev. Lett. 99, 213901 (2007)CrossRefGoogle Scholar
  76. 76.
    G.A. Siviloglou, D.N. Christodoulides, Accelerating finite energy Airy beams. Opt. Lett. 32, 979–981 (2007)CrossRefGoogle Scholar
  77. 77.
    J. Baumgartl, M. Mazilu, K. Dholakia, Optically mediated particle clearing using Airy wavepackets. Nat. Photon. 2, 675–678 (2008)CrossRefGoogle Scholar
  78. 78.
    P. Polynkin, M. Kolesik, J.V. Moloney, G.A. Siviloglou, D.N. Christodoulides, Curved plasma channel generation using ultraintense Airy beams. Science 324, 229–232 (2009)CrossRefGoogle Scholar
  79. 79.
    D. Luo, H.T. Dai, X.W. Sun, H.V. Demir, Electrically switchable finite energy Airy beams generated by a liquid crystal cell with patterned electrode. Opt. Commun. 283, 3846–3849 (2010)CrossRefGoogle Scholar
  80. 80.
    T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, A. Arie, Nonlinear generation and manipulation of Airy beams. Nat. Photon. 3, 395–398 (2009)CrossRefGoogle Scholar
  81. 81.
    E. Abramochkin, E. Razueva, Product of three Airy beams. Opt. Lett. 36, 3732–3734 (2011)CrossRefGoogle Scholar
  82. 82.
    L. Li, T. Li, S.M. Wang, C. Zhang, S.N. Zhu, Plasmonic Airy beam generated by in-plane diffraction. Phys. Rev. Lett. 107, 126804 (2011)CrossRefGoogle Scholar
  83. 83.
    A. Minovich, A.E. Klein, N. Janunts, T. Pertsch, D.N. Neshev, Y.S. Kivshar, Generation and near-field imaging of airy surface plasmons. Phys. Rev. Lett. 107, 116802 (2011)CrossRefGoogle Scholar
  84. 84.
    P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, X. Zhang, Plasmonic Airy beams with dynamically controlled trajectories. Opt. Lett. 36, 3191–3193 (2011)CrossRefGoogle Scholar
  85. 85.
    A.E. Minovich, A.E. Klein, D.N. Neshev, T. Pertsch, Y.S. Kivshar, D.N. Christodoulides, Airy plasmons: non-diffracting optical surface waves. Laser Photonics Rev. 8, 221–232 (2014)CrossRefGoogle Scholar
  86. 86.
    A. Salandrino, D.N. Christodoulides, Airy plasmon: a nondiffracting surface wave. Opt. Lett. 35, 2082–2084 (2010)CrossRefGoogle Scholar
  87. 87.
    Z. Li, H. Cheng, Z. Liu, S. Chen, J. Tian, Plasmonic Airy beam generation by both phase and amplitude modulation with metasurfaces. Adv. Opt. Mater. 4, 1230–1235 (2016)CrossRefGoogle Scholar
  88. 88.
    Q. Fan, D. Wang, P. Huo, Z. Zhang, Y. Liang, T. Xu, Autofocusing Airy beams generated by all-dielectric metasurface for visible light. Opt. Express 25, 9285–9294 (2017)CrossRefGoogle Scholar
  89. 89.
    E.-Y. Song, G.-Y. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, B. Lee, Compact generation of Airy beams with C-aperture metasurface. Adv. Opt. Mater. 5, 1601028 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina

Personalised recommendations