Advertisement

Exponents of \([\Omega ({\mathbb {S}}^{r+1}), \Omega (Y)]\)

  • Marek Golasiński
  • Daciberg Lima Gonçalves
  • Peter WongEmail author
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

We investigate the exponents of the total Cohen groups \([\Omega ({\mathbb S}^{r+1}), \Omega (Y)]\) for any \(r\ge 1\). In particular, we show that for \(p\ge 3\), the p-primary exponents of \([\Omega ({\mathbb S}^{r+1}), \Omega ({\mathbb S}^{2n+1})]\) and \([\Omega ({\mathbb S}^{r+1}), \Omega ({\mathbb S}^{2n})]\) coincide with the p-primary homotopy exponents of spheres \({\mathbb S}^{2n+1}\) and \({\mathbb S}^{2n}\), respectively. We further study the exponent problem when Y is a space with the homotopy type of \(\Sigma (n)/G\) for a homotopy n-sphere \(\Sigma (n)\), the complex projective space \(\mathbb {C}P^n\) for \(n\ge 1\) or the quaternionic projective space \(\mathbb {H}P^n\) for \(1\le n\le \infty \).

Keywords

Barratt-Puppe sequence Cohen group EHP sequence James construction James-Hopf map (invariant) Moore space p-primary (homotopy) exponent Projective space Homotopy space form Whitehead product 

2010 Mathematics Subject Classication

Primary: 55Q05 55Q15 55Q20 Secondary: 55P65 

Notes

Acknowledgements

This work was initiated and completed during the authors’ visits to Banach Center in Warsaw, Poland, October 27–November 05, 2016 and February 17–March 03, 2018, respectively. The authors would like to thank the Banach Center in Warsaw, Poland, and the Faculty of Mathematics and Computer Science, the University of Warmia and Mazury in Olsztyn, Poland, for their hospitality and support.

Special thanks are due to Jim Stasheff for pointing out the Dold–Lashof result in [4, 23] and to Jie Wu for helpful conversations regarding the Cohen groups. Finally, the authors would like to express their gratitude to three anonymous referees for their invaluable suggestions which help improve the exposition of the paper.

References

  1. 1.
    H.J. Baues, Commutator Calculus and Groups of Homotopy Classes. London Mathematical Society Lecture Note Series, vol. 50 (Cambridge University Press, Cambridge 1981)Google Scholar
  2. 2.
    F.R. Cohen, The unstable decomposition of \(\Omega ^2\Sigma ^2X\) and its applications. Math. Z. 182(4), 553–568 (1983)MathSciNetCrossRefGoogle Scholar
  3. 3.
    F.R. Cohen, J. Moore, J. Neisendorfer, The double suspension and exponents of the homotopy groups of spheres. Ann. Math. 110(3), 549–565 (1979)MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Dold, R. Lashof, Principal quasifibrations and fiber homotopy equivalence of bundles. Ill. J. Math. 3(2), 285–305 (1959)zbMATHGoogle Scholar
  5. 5.
    M. Golasiński, D. Gonçalves, P. Wong, On the group structure of \([\Omega \mathbb{S}^2, \Omega Y]\). Q. J. Math. 66(1), 111–132 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Golasiński, D. Gonçalves, P. Wong, On the group structure of \([J(X), \Omega (Y)]\). J. Homotopy Relat. Struct. 12(3), 707–726 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    M. Golasiński, J. Mukai, Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces (Springer, Cham, 2014)zbMATHGoogle Scholar
  8. 8.
    B. Gray, On the sphere of origin of infinite families in the homotopy groups of spheres. Topology 8, 219–232 (1969)MathSciNetCrossRefGoogle Scholar
  9. 9.
    J. Grbić, H. Zhao, Homotopy exponents of some homogeneous spaces. Q. J. Math. 62(4), 953–976 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Hatcher, Algebraic Topology (Cambridge University Press, Cambridge, 2002)zbMATHGoogle Scholar
  11. 11.
    P.J. Hilton, On the homotopy groups of the union of spheres. J. Lond. Math. Soc. 30, 154–172 (1955)MathSciNetCrossRefGoogle Scholar
  12. 12.
    I.M. James, The suspension triad of a sphere. Ann. Math. 63(2), 407–429 (1956)MathSciNetCrossRefGoogle Scholar
  13. 13.
    I.M. James, On the suspension sequence. Ann. Math. 65, 74–107 (1957)MathSciNetCrossRefGoogle Scholar
  14. 14.
    J. Long, Thesis. Ph.D. Thesis, Princeton University (1978)Google Scholar
  15. 15.
    J. Milnor, On spaces having the homotopy type of a \(CW\)-complex. Trans. Am. Math. Soc. 90, 272–280 (1959)MathSciNetzbMATHGoogle Scholar
  16. 16.
    J. Neisendorfer, \(3\)-primary exponents. Math. Proc. Camb. Philos. Soc. 90(1), 63–83 (1981)MathSciNetCrossRefGoogle Scholar
  17. 17.
    J. Neisendorfer, The exponent of a Moore space, in Algebraic Topology and Algebraic K-Theory (Princeton, 1983). Annals of Mathematics Studies, vol. 113, ed. by W. Browder (Princeton University, Princeton, 1987), pp. 35–71Google Scholar
  18. 18.
    P.S. Selick, Odd primary torsion in \(\pi _k(\mathbb{S}^3)\). Topology 17, 407–412 (1978)MathSciNetCrossRefGoogle Scholar
  19. 19.
    P.S. Selick, \(2\)-primary exponents for the homotopy groups of spheres. Topology 23, 97–99 (1984)MathSciNetCrossRefGoogle Scholar
  20. 20.
    P.J. Selick, J. Wu, On natural coalgebra decompositions of tensor algebras and loop suspensions. Mem. Amer. Math. Soc. 148 (701) (2000) 701MathSciNetCrossRefGoogle Scholar
  21. 21.
    J.-P. Serre, Groups d’homotopie et classes groupes d’homotopie. Ann. Math. 58, 258–294 (1953)MathSciNetCrossRefGoogle Scholar
  22. 22.
    D. Stanley, Exponents and suspensions. Math. Proc. Camb. Philos. Soc. 133(1), 109–116 (2002)MathSciNetCrossRefGoogle Scholar
  23. 23.
    J. Stasheff, H-spacers from a Homotopy Point of View, vol. 161, Lecture Notes in Math (Springer-Verlag, Berlin-Heidelberg-New York, 1970)CrossRefGoogle Scholar
  24. 24.
    S. Theriault, Homotopy exponents of mod \(2^r\) Moore spaces. Topology 47(6), 369–398 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    H. Toda, On the double suspension \(E^2\). Inst. Polytech. Osaka City Univ. Ser. A: 7, 103–145 (1956)MathSciNetGoogle Scholar
  26. 26.
    H. Toda, Composition Methods in Homotopy Groups of Spheres. Annals of Mathematics Studies, vol. 49 (Princeton University Press, Princeton, 1962)Google Scholar
  27. 27.
    G.W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Mathematics 61 (Springer, Berlin, 1978)CrossRefGoogle Scholar
  28. 28.
    J. Wu, Homotopy theory of the suspensions of the projective plane. Mem. Am. Math. Soc. 162, 769 (2003)MathSciNetGoogle Scholar
  29. 29.
    J. Wu, On maps from loop suspensions to loop spaces and the shuffle relations on the Cohen groups. Mem. Am. Math. Soc. 180, 851 (2006)MathSciNetzbMATHGoogle Scholar
  30. 30.
    H. Zhao, L. Zhong, W. Shen, Homotopy exponents of Stiefel manifolds in the stable range, Acta Math. Sin. (Engl. Ser.) 32(9), 1080–1088 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Marek Golasiński
    • 1
  • Daciberg Lima Gonçalves
    • 2
  • Peter Wong
    • 3
    Email author
  1. 1.Faculty of Mathematics and Computer ScienceUniversity of Warmia and MazuryOlsztynPoland
  2. 2.Department of Mathematics - IME - USP, Rua do Matão 1010 CEPSão PauloBrazil
  3. 3.Department of Mathematics, Bates CollegeLewistonUSA

Personalised recommendations