Advertisement

Synthesis of Polypeptides

  • Kousuke Tsuchiya
  • Yu Miyagi
  • Takaaki Miyamoto
  • Prashant G. Gudeangadi
  • Keiji NumataEmail author
Chapter
Part of the Green Chemistry and Sustainable Technology book series (GCST)

Abstract

Proteases (EC 3.4), enzymes originally used to cleave the amide bonds of proteins by hydrolysis, have been utilized for the enzymatic synthesis of peptide compounds. This enzymatic synthesis of polypeptides is a biomass-based, environmentally benign, atom-economical, and stereo-/regioselective method that can replace petroleum-derived chemical polypeptide syntheses. Enzymatic polymerization of amino acid derivatives using proteases proceeds via the reverse reaction of hydrolysis, which is aminolysis, in an equilibrium. Thermodynamic and kinetic controls in the aminolysis reaction rationally optimize enzymatic polymerization efficiency. Polymerization is regulated by the substrate specificity of proteases, namely, a combination of amino acid monomers and proteases. A great number of polypeptides, including homopolymers, random/block copolymers, and specific polymer architectures, such as star-shaped polymers, are synthesized by a protease-catalyzed polymerization technique. In this chapter, versatile designs and syntheses of polypeptide materials using various types of proteases are entirely reviewed in detail.

Keywords

Polypeptide Protease Amino acid Aminolysis Protein 

References

  1. 1.
    Merrifield B (1986) Solid phase synthesis. Science 232(4748):341–347PubMedCrossRefGoogle Scholar
  2. 2.
    Deming TJ (2007) Synthetic polypeptides for biomedical applications. Prog Polym Sci 32(8–9):858–875CrossRefGoogle Scholar
  3. 3.
    McGrath KP, Fournier MJ, Mason TL et al (1992) Genetically directed syntheses of new polymeric materials. Expression of artificial genes encoding proteins with repeating -(AlaGly)3ProGluGly- elements. J Am Chem Soc 114(2):727–733CrossRefGoogle Scholar
  4. 4.
    Zhang G, Fournier MJ, Mason TL et al (1992) Biological synthesis of monodisperse derivatives of poly(α,l-glutamic acid): model rodlike polymers. Macromolecules 25(13):3601–3603CrossRefGoogle Scholar
  5. 5.
    Bordusa F (2002) Proteases in organic synthesis. Chem Rev 102(12):4817–4867PubMedCrossRefGoogle Scholar
  6. 6.
    Yazawa K, Numata K (2014) Recent advances in chemoenzymatic peptide syntheses. Molecules 19(9):13755PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Numata K (2015) Poly(amino acid)s/polypeptides as potential functional and structural materials. Polym J 47(8):537–545CrossRefGoogle Scholar
  8. 8.
    Tsuchiya K, Numata K (2017) Chemoenzymatic synthesis of polypeptides for use as functional and structural materials. Macromol Biosci 17(11):1700177CrossRefGoogle Scholar
  9. 9.
    Jakubke HD, Kuhl P, Könnecke A (1985) Basic principles of protease-catalyzed peptide bond formation. Angew Chem Int Ed Engl 24(2):85–93CrossRefGoogle Scholar
  10. 10.
    Morihara K (1987) Using proteases in peptide synthesis. Trends Biotechnol 5(6):164–170CrossRefGoogle Scholar
  11. 11.
    Bongers J, Heimer EP (1994) Recent applications of enzymatic peptide synthesis. Peptides 15(1):183–193PubMedCrossRefGoogle Scholar
  12. 12.
    Kumar D, Bhalla TC (2005) Microbial proteases in peptide synthesis: approaches and applications. Appl Microbiol Biotechnol 68(6):726–736PubMedCrossRefGoogle Scholar
  13. 13.
    Guzmán F, Barberis S, Illanes A (2007) Peptide synthesis: chemical or enzymatic. Electron J Biotechnol 10(2):279–314CrossRefGoogle Scholar
  14. 14.
    Yagasaki M, Hashimoto S (2008) Synthesis and application of dipeptides; current status and perspectives. Appl Microbiol Biotechnol 81(1):13–22PubMedCrossRefGoogle Scholar
  15. 15.
    Chen F, Zhang F, Wang A et al (2010) Recent progress in the chemo-enzymatic peptide synthesis. Afr J Pharm Pharmacol 4(10):721–730Google Scholar
  16. 16.
    Białkowska AM, Morawski K, Florczak T (2017) Extremophilic proteases as novel and efficient tools in short peptide synthesis. J Ind Microbiol Biotechnol 44(9):1325–1342PubMedCrossRefGoogle Scholar
  17. 17.
    Carpenter FH (1960) The free energy change in hydrolytic reactions: the non-ionized compound convention. J Am Chem Soc 82(5):1111–1122CrossRefGoogle Scholar
  18. 18.
    Homandberg GA, berg MJA et al (1978) Synthesis of peptide bonds by proteinases. Addition of organic cosolvents shifts peptide bond equilibria toward synthesis. Biochemistry 17(24):5220–5227PubMedCrossRefGoogle Scholar
  19. 19.
    Cassells JM, Halling PJ (1989) Low- water organic two-phase systems and problems affecting it. Biotechnol Bioeng 33:1489–1494PubMedCrossRefGoogle Scholar
  20. 20.
    Halling PJ (1994) Thermodynamic predictions for biocatalysis in nonconventional media: theory, tests, and recommendations for experimental design and analysis. Enzym Microb Technol 16(3):178–206CrossRefGoogle Scholar
  21. 21.
    Deschrevel B, Vincent JC, Ripoll C et al (2003) Thermodynamic parameters monitoring the equilibrium shift of enzyme-catalyzed hydrolysis/synthesis reactions in favor of synthesis in mixtures of water and organic solvent. Biotechnol Bioeng 81(2):167–177PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Schellenberger V, Jakubke HDD (1991) Protease-catalyzed kinetically controlled peptide synthesis. Angew Chem Int Ed Engl 30(11):1437–1449CrossRefGoogle Scholar
  23. 23.
    Qin X, Xie W, Tian S et al (2014) Influence of N ε-protecting groups on the protease-catalyzed oligomerization of L-lysine methyl ester. ACS Catal 4(6):1783–1792Google Scholar
  24. 24.
    Christensen U (1994) Effects of pH on carboxypeptidase-Y-catalyzed hydrolysis and aminolysis reactions. Eur J Biochem 220(1):149–153PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Hansler M, Jakubke HD (1996) Reverse action of hydrolases in frozen aqueous solutions. Amino Acids 11:379–395PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Jönsson Å, Wehtje E, Adlercreutz P (1997) Low reaction temperature increases the selectivity in an enzymatic reaction due to substrate solvation effects. Biotechnol Lett 19(1):85–88CrossRefGoogle Scholar
  27. 27.
    Narai-Kanayama A, Hanaishi T, Aso K (2012) Α-chymotrypsin-catalyzed synthesis of poly-l-cysteine in a frozen aqueous solution. J Biotechnol 157(3):428–436PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Kuhl P, Konnecke A, Doring G et al (1980) Enzyme-catalyzed peptide synthesis in biphasic aqueous-organic systems. Tetrahedron Lett 21:895–896CrossRefGoogle Scholar
  29. 29.
    Eggers DK, Blanch HW, Prausnitz JM (1989) Extractive catalysis: solvent effects on equilibria of enzymatic reactions in two-phase systems. Enzym Microb Technol 11(2):84–89CrossRefGoogle Scholar
  30. 30.
    Gaertner H, Puigserver A (1989) Kinetics and specificity of serine proteases in peptide synthesis catalyzed in organic solvents. Eur J Biochem 181(1):207–213PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Nadim A, Stoineva IB, Galunsky B et al (1992) Mass transfer induced interchange of the kinetic and thermodynamic control of enzymic peptide synthesis in biphasic water-organic systems. Biotechnol Tech 6(6):539–544CrossRefGoogle Scholar
  32. 32.
    Kisee H, Fujimoto K, Noritomi H (1988) Enzymatic reactions in aqueous-organic media. VI. Peptide synthesis by α-chymotrypsin in hydrophilic organic solvents. J Biotechnol 8(4):279–290CrossRefGoogle Scholar
  33. 33.
    Viswanathan K, Omorebokhae R, Li G et al (2010) Protease-catalyzed oligomerization of hydrophobic amino acid ethyl esters in homogeneous reaction media using l-phenylalanine as a model system. Biomacromolecules 11(8):2152–2160PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Fastrez J, Fersht AR (1973) Demonstration of the acyl-enzyme mechanism for the hydrolysis of peptides and anilides by chymotrypsin. Biochemistry 12(11):2025–2034PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Schellenberger V, Jakubke H-D (1986) A spectrophotometric assay for the characterization of the S’ subsite specificity of α-chymotrypsin. Biochim Biophys Acta Protein Struct Mol Enzymol 869(1):54–60Google Scholar
  36. 36.
    Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27(2):157–162PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Berger A, Schechter I (1970) Mapping the active site of papain with the aid of peptide substrates and inhibitors. Philos Trans R Soc B 257(813):249–264CrossRefGoogle Scholar
  38. 38.
    Qin X, Khuong AC, Yu Z et al (2013) Simplifying alternating peptide synthesis by protease-catalyzed dipeptide oligomerization. Chem Commun 49(4):385–387CrossRefGoogle Scholar
  39. 39.
    Fukuoka T, Tachibana Y, Tonami H et al (2002) Enzymatic polymerization of tyrosine derivatives. Peroxidase- and protease-catalyzed synthesis of poly(tyrosine)s with different structures. Biomacromolecules 3(4):768–774PubMedCrossRefGoogle Scholar
  40. 40.
    Geng L, Vaidya A, Viswanathan K et al (2006) Rapid regioselective oligomerization of l-glutamic acid diethyl ester catalyzed by papain. Macromolecules 39(23):7915–7921CrossRefGoogle Scholar
  41. 41.
    Viswanathan K, Li G, Gross RA (2010) Protease catalyzed in situ C-terminal modification of oligoglutamate. Macromolecules 43(12):5245–5255CrossRefGoogle Scholar
  42. 42.
    Baker PJ, Numata K (2012) Chemoenzymatic synthesis of poly(l-alanine) in aqueous environment. Biomacromolecules 13(4):947–951PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Schwab LW, Kloosterman WMJ, Konieczny J et al (2012) Papain catalyzed (co)oligomerization of α-amino acids. Polymers 4(1):710–740CrossRefGoogle Scholar
  44. 44.
    Uyama H, Fukuoka T, Komatsu I et al (2002) Protease-catalyzed regioselective polymerization and copolymerization of glutamic acid diethyl ester. Biomacromolecules 3(2):318–323PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Li G, Raman VK, Xie W et al (2008) Protease-catalyzed co-oligomerizations of l-leucine ethyl ester with l-glutamic acid diethyl ester: sequence and chain length distributions. Macromolecules 41:7003–7012CrossRefGoogle Scholar
  46. 46.
    Ménard R, Carrière J, Laflamme P et al (1991) Contribution of the glutamine 19 side chain to transition-state stabilization in the oxyanion hole of papain. Biochemistry 30(37):8924–8928PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Vernet T, Tessier DC, Chatellier J et al (1995) Structural and functional roles of asparagine 175 in the cysteine protease papain. J Biol Chem 270:16645–16652PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Gul S, Hussain S, Thomas MP et al (2008) Generation of nucleophilic character in the Cys25/His159 ion pair of papain involves Trp177 but not Asp158. Biochemistry 47(7):2025–2035Google Scholar
  49. 49.
    Turk D, Guncar G, Podobnik M et al (1998) Revised definition of substrate binding sites of papain-like cysteine proteases. Biol Chem 379(2):137–147PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Harris JL, Backes BJ, Leonetti F et al (2000) Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc Natl Acad Sci 97(14):7754–7759PubMedCrossRefGoogle Scholar
  51. 51.
    Choe Y, Leonetti F, Greenbaum DC et al (2006) Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J Biol Chem 281(18):12824–12832PubMedCrossRefGoogle Scholar
  52. 52.
    Ageitos JM, Yazawa K, Tateishi A et al (2016) The benzyl ester group of amino acid monomers enhances substrate affinity and broadens the substrate specificity of the enzyme catalyst in chemoenzymatic copolymerization. Biomacromolecules 17(1):314–323PubMedCrossRefGoogle Scholar
  53. 53.
    Viswanathan K, Schofield MH, Teraoka I et al (2012) Surprising metal binding properties of phytochelatin-like peptides prepared by protease-catalysis. Green Chem 14(4):1020–1029CrossRefGoogle Scholar
  54. 54.
    Numata K, Baker PJ (2014) Synthesis of adhesive peptides similar to those found in blue mussel (mytilus edulis) using papain and tyrosinase. Biomacromolecules 15(8):3206–3212PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Rasheedi S, Haq SK, Khan RH (2003) Guanidine hydrochloride denaturation of glycosylated and deglycosylated stem bromelain. Biochem Mosc 68(10):1097–1100CrossRefGoogle Scholar
  56. 56.
    Ahmad B, Rathar GM, Varshney A et al (2009) pH-dependent urea-induced unfolding of stem bromelain: unusual stability against urea at neutral pH. Biochemistry (Mosc) 74(12):1337–1343Google Scholar
  57. 57.
    Bhattacharya R, Bhattacharyya D (2009) Resistance of bromelain to SDS binding. Biochim Biophys Acta, Proteins Proteomics 1794(4):698–708Google Scholar
  58. 58.
    Dave S, Mahajan S, Chandra V et al (2010) Specific molten globule conformation of stem bromelain at alkaline pH. Arch Biochem Biophys 499(1–2):26–31PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Napper AD, Bennett SP, Borowski M (1994) Purification and characterization of multiple forms of the pineapple-stem-derived cysteine proteinases ananain and comosain. Biochem J 301(Pt3):727–735PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Qin X, Xie W, Su Q et al (2011) Protease-catalyzed oligomerization of l-lysine ethyl ester in aqueous solution. ACS Catal 1(9):1022–1034CrossRefGoogle Scholar
  61. 61.
    McGrath ME, Craik CS, Fletterick RJ et al (1992) Perturbing the polar environment of Asp102 in trypsin: consequences of replacing conserved Ser214. Biochemistry 31(12):3059–3064Google Scholar
  62. 62.
    Blow DM (1976) Structure and mechanism of chymotrypsin. Acc Chem Res 9(4):145–152CrossRefGoogle Scholar
  63. 63.
    Brenner M, Müller HR, Pfister RW (1950) Eine neue enzymatische peptidsynthese. 1. Mitteilung. Helv Chim Acta 33(3):568–591CrossRefGoogle Scholar
  64. 64.
    Brenner M, Pfister RW (1951) Enzymatische peptidsynthese. 2. Mitteilung. Isolierung von enzymatisch gebildeteml-methionyl-l-methionin und l-methionyl-l-methionyl-l-methionin; vergleich mit synthetischen produkten. Helv Chim Acta 34(6):2085–2096CrossRefGoogle Scholar
  65. 65.
    Qin X, Xie W, Tian S et al (2013) Enzyme-triggered hydrogelation via self-assembly of alternating peptides. Chem Commun 49(42):4839–4841CrossRefGoogle Scholar
  66. 66.
    Ebeling W, Hennrich N, Klockow M et al (1974) Proteinase K from Tritirachium album limber. Eur J Biochem 47(1):91–97Google Scholar
  67. 67.
    Saenger W (2013) Proteinase K, vol 3. Elsevier Ltd., AmsterdamGoogle Scholar
  68. 68.
    Bajorath J, Saenger W, Pal GP (1988) Autolysis and inhibition of proteinase K, a subtilisin-related serine proteinase isolated from the fungus tritirachium album limber. Biochim Biophys Acta, Proteins Proteomics 954((C)):176–182CrossRefGoogle Scholar
  69. 69.
    Kraus E, Kiltz HH, Femfert UF (1976) The specificity of proteinase K against oxidized insulin b chain. Hoppe-Seyler’s Z. Physiol Chem 357(2):233–237PubMedGoogle Scholar
  70. 70.
    Sweeney PJ, Walker JM (1993) Proteinase K (EC 3.4.21.14). Methods Mol Biol 16(5):305–311Google Scholar
  71. 71.
    Ageitos JM, Baker PJ, Sugahara M et al (2013) Proteinase K-catalyzed synthesis of linear and star oligo(l-phenylalanine) conjugates. Biomacromolecules 14(10):3635–3642PubMedCrossRefGoogle Scholar
  72. 72.
    Ageitos JM, Chuah JA, Numata K (2015) Chemo-enzymatic synthesis of linear and branched cationic peptides: evaluation as gene carriers. Macromol Biosci 15(7):990–1003PubMedCrossRefGoogle Scholar
  73. 73.
    Ma Y, Li Z, Numata K (2016) Synthetic short peptides for rapid fabrication of monolayer cell sheets. ACS Biomater Sci Eng 2(4):697–706CrossRefGoogle Scholar
  74. 74.
    Craik C, Largman C, Fletcher T et al (1985) Redesigning trypsin: alteration of substrate specificity. Science 228(4697):291–297PubMedCrossRefGoogle Scholar
  75. 75.
    Baird T, Wang B, Lodder M et al (2000) Generation of active trypsin by chemical cleavage. Tetrahedron 56(48):9477–9485CrossRefGoogle Scholar
  76. 76.
    May R (1979) Trypsin-catalyzed synthesis of the arginyl-arginine dipeptide from l-arginine ethyl ester. Biotechnol Lett 1(2):102–102CrossRefGoogle Scholar
  77. 77.
    Aso K, Kodaka H (1992) Trypsin-catalyzed oligomerization of l-lysine esters. Biosci Biotechnol Biochem 56(5):755–758PubMedCrossRefGoogle Scholar
  78. 78.
    Endo S (1962) Studies on protease produced by thermophilic bacteria. J Ferment Technol 40:346–353Google Scholar
  79. 79.
    Feder J, Garrett LR, Wildi BS (1971) Studies on the role of calcium in thermolysin. Biochemistry 10(24):4552–4556PubMedCrossRefGoogle Scholar
  80. 80.
    Lipscomb WN, Sträter N (1996) Recent advances in zinc enzymology. Chem Rev 96(7):2375–2434PubMedCrossRefGoogle Scholar
  81. 81.
    Isowa Y, Ohmori M, Ichikawa T et al (1979) The thermolysin-catalyzed condensation reactions of N-substituted aspartic and glutamic acids with phenylalanine alkyl esters. Tetrahedron Lett 20(28):2611–2612CrossRefGoogle Scholar
  82. 82.
    Isowa Y, Ohmori M, Sato M et al (1977) The enzymatic synthesis of protected valine-5 angiotensin II amide-I. Bull Chem Soc Jpn 50(10):2766–2772Google Scholar
  83. 83.
    Isowa Y, Ohmori M, Sato M et al (1977) The synthesis of peptides by means of proteolytic enzymes. Bull Chem Soc Jpn 50(10):2762–2765CrossRefGoogle Scholar
  84. 84.
    Isowa Y, Ichikawa T, Ohmori M (1978) Peptide syntheses with proteinases. Fragment condensation of ZLeuGlnGlyOH or ZGlnGlyOH with HLeuValNH2 using metalloproteinases. Bull Chem Soc Jpn 51(1):271–276CrossRefGoogle Scholar
  85. 85.
    Isowa Y, Ichikawa T (1979) Syntheses of N-acyl dipeptide derivatives by metalloproteinases. Bull Chem Soc Jpn 52(3):796–800Google Scholar
  86. 86.
    Wayne SI, Fruton JS (1983) Thermolysin-catalyzed peptide bond synthesis. Proc Natl Acad Sci U S A 80(11):3241–3244PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Kitaguchi H, Klibanov AM (1989) Enzymatic peptide synthesis via segment condensation in the presence of water mimics. J Am Chem Soc 111(26):9272–9273CrossRefGoogle Scholar
  88. 88.
    Basso A, De Martin L, Ebert C et al (2000) High isolated yields in thermodynamically controlled peptide synthesis in toluene catalysed by thermolysin adsorbed on celite R-640. Chem Commun 6:467–468Google Scholar
  89. 89.
    Ulijn RV, Baragaña B, Halling PJ et al (2002) Protease-catalyzed peptide synthesis on solid support. J Am Chem Soc 124(37):10988–10989PubMedCrossRefGoogle Scholar
  90. 90.
    Ulijn RV, Bisek N, Halling PJ et al (2003) Understanding protease catalysed solid phase peptide synthesis. Org Biomol Chem 1(8):1277–1281PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Thust S, Koksch B (2004) Discovery of carboxypeptidase Y as a catalyst for the incorporation of sterically demanding α-fluoroalkyl amino acids into peptides. Tetrahedron Lett 45(6):1163–1165CrossRefGoogle Scholar
  92. 92.
    Nitta S, Komatsu A, Ishii T et al (2016) Synthesis of peptides with narrow molecular weight distributions via exopeptidase-catalyzed aminolysis of hydrophobic amino-acid alkyl esters. Polym J 48(9):955–961CrossRefGoogle Scholar
  93. 93.
    Komeda H, Asano Y (1999) Synthesis of d-phenylalanine oligopeptides catalyzed by alkaline d-peptidase from bacillus cereus DF4-B. J Mol Catal B Enzym 6(3):379–386CrossRefGoogle Scholar
  94. 94.
    Kato Y, Asano Y, Nakazawa A et al (1990) Synthesis of d-alanine oligopeptides catalyzed by d-aminopeptidase in non-aqueous media. Biocatal Biotransformation 3(3):207–215Google Scholar
  95. 95.
    Zhang Y, Xia B, Li Y et al (2016) Solvent-free lipase-catalyzed synthesis: unique properties of enantiopure d- and l-polyaspartates and their complexation. Biomacromolecules 17(1):362–370PubMedCrossRefGoogle Scholar
  96. 96.
    Totsingan F, Centore R, Gross RA (2017) CAL-B catalyzed regioselective bulk polymerization of l-aspartic acid diethyl ester to alpha-linked polypeptides. Chem Commun 53(28):4030–4033CrossRefGoogle Scholar
  97. 97.
    Dannenberg AM, Smith EL (1955) Action of proteinase I of bovine lung. Hydrolysis of the oxidized b chain of insulin; polymer formation from amino acid esters. J Biol Chem 215(1):55–66PubMedGoogle Scholar
  98. 98.
    Sluyterman LAÆ, Wijdenes J (1972) Sigmoidal progress curves in the polymerization of leucine methyl ester catalyzed by papain. Biochim Biophys Acta, Enzymol 289(1):194–202CrossRefGoogle Scholar
  99. 99.
    Tsuchiya K, Numata K (2017) Chemical synthesis of multiblock copolypeptides inspired by spider dragline silk proteins. ACS Macro Lett 6(2):103–106CrossRefGoogle Scholar
  100. 100.
    Lampel A, McPhee SA, Park H-A et al (2017) Polymeric peptide pigments with sequence-encoded properties. Science 356(6342):1064PubMedCrossRefGoogle Scholar
  101. 101.
    Matsumura S, Tsushima Y, Otozawa N et al (1999) Enzyme-catalyzed polymerization of l-aspartate. Macromol Rapid Commun 20(1):7–11CrossRefGoogle Scholar
  102. 102.
    Soeda Y, Toshima K, Matsumura S (2003) Sustainable enzymatic preparation of polyaspartate using a bacterial protease. Biomacromolecules 4(2):196–203PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Martin ME, Rice KG (2007) Peptide-guided gene delivery. AAPS J 9(1):E18–E29PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Heitz F, Morris MC, Divita G (2009) Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 157(2):195–206PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Fagerland J, Finne-Wistrand A, Numata K (2014) Short one-pot chemo-enzymatic synthesis of l-lysine and l-alanine diblock co-oligopeptides. Biomacromolecules 15(3):735–743PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Ma Y, Sato R, Li Z et al (2016) Chemoenzymatic synthesis of oligo(l-cysteine) for use as a thermostable bio-based material. Macromol Biosci 16(1):151–159PubMedCrossRefGoogle Scholar
  107. 107.
    Anderson G, Luisi PL (1979) Papain-induced oligomerization of α-amino acid esters. Helv Chim Acta 62(2):488–494CrossRefGoogle Scholar
  108. 108.
    Jost R, Brambilla E, Monti JC et al (1980) Papain catalyzed oligomerization of α-amino acids. Synthesis and characterization of water-insoluble oligomers of l-methionine. Helv Chim Acta 63(2):375–384CrossRefGoogle Scholar
  109. 109.
    Nuijens T, Piva E, Kruijtzer JAW et al (2011) Fully enzymatic n→c-directed peptide synthesis using C-terminal peptide α-carboxamide to ester interconversion. Adv Synth Catal 353(7):1039–1044CrossRefGoogle Scholar
  110. 110.
    Wang M, Qi W, Yu Q et al (2011) Kinetically controlled enzymatic synthesis of dipeptide precursor of l-alanyl-l-glutamine. Biotechnol Appl Biochem 58(6):449–455PubMedCrossRefGoogle Scholar
  111. 111.
    Yazawa K, Numata K (2016) Papain-catalyzed synthesis of polyglutamate containing a nylon monomer unit. Polymers 8(5):194PubMedCentralCrossRefPubMedGoogle Scholar
  112. 112.
    Yazawa K, Gimenez-Dejoz J, Masunaga H et al (2017) Chemoenzymatic synthesis of a peptide containing nylon monomer units for thermally processable peptide material application. Polym Chem 8(29):4172–4176CrossRefGoogle Scholar
  113. 113.
    Galoppini E, Fox MA (1996) Effect of the electric field generated by the helix dipole on photoinduced intramolecular electron transfer in dichromophoric α-helical peptides. J Am Chem Soc 118(9):2299–2300CrossRefGoogle Scholar
  114. 114.
    Solà J, Helliwell M, Clayden J (2010) N- versus C-terminal control over the screw-sense preference of the configurationally achiral, conformationally helical peptide motif Aib8GlyAib8. J Am Chem Soc 132(13):4548–4549PubMedCrossRefGoogle Scholar
  115. 115.
    Tsuchiya K, Numata K (2017) Chemoenzymatic synthesis of polypeptides containing the unnatural amino acid 2-aminoisobutyric acid. Chem Commun 53(53):7318–7321CrossRefGoogle Scholar
  116. 116.
    Tsuchiya K, Numata K (2016) Papain-catalyzed chemoenzymatic synthesis of telechelic polypeptides using bis(leucine ethyl ester) initiator. Macromol Biosci 16(7):1001–1008PubMedCrossRefGoogle Scholar
  117. 117.
    Tsuchiya K, Masunaga H, Numata K (2017) Tensile reinforcement of silk films by the addition of telechelic-type polyalanine. Biomacromolecules 18(3):1002–1009PubMedCrossRefGoogle Scholar
  118. 118.
    Tsuchiya K, Takaoki I, Masunaga H et al (2018) Spider dragline silk composite films doped with linear and telechelic polyalanine: effect of polyalanine on the structure and mechanical properties. Sci Rep 8:3654PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Kousuke Tsuchiya
    • 1
  • Yu Miyagi
    • 1
  • Takaaki Miyamoto
    • 1
  • Prashant G. Gudeangadi
    • 1
  • Keiji Numata
    • 1
    Email author
  1. 1.Biomacromolecules Research TeamRIKEN Center for Sustainable Resource ScienceWakoJapan

Personalised recommendations