Advertisement

Synthesis of Polyesters II: Hydrolase as Catalyst for Ring-Opening Polymerization

  • Hiroshi UyamaEmail author
  • Shiro Kobayashi
Chapter
Part of the Green Chemistry and Sustainable Technology book series (GCST)

Abstract

This chapter reviews enzymatic lipase-catalyzed ring-opening polymerizations (ROPs) to polyesters. A variety of cyclic esters are subjected to lipase- catalyzed ROP. Lipase catalysis shows unique polymerization behaviors of lactones with different ring sizes. ROP mechanism of lactones by lipase catalyst is mentioned, which applies to preparation of terminal functional polyesters. Lipase catalysis induces enantio-, regio-, and chemoselective ROPs, which can hardly be achieved by conventional chemical catalysts. ROP of cyclic esters in a variety of media is mentioned for green synthesis of polyesters. ROP of lactones is combined with living radical polymerizations, yielding designed block copolymers. ROP of other cyclic monomers, mainly cyclic carbonate, is also mentioned in this chapter.

Keywords

Cyclic monomer Enzymatic polymerization Lactone Lipase Polyester Ring-opening polymerization 

References

  1. 1.
    Kobayashi S, Makino A (2009) Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev 109:5288–5353PubMedCrossRefGoogle Scholar
  2. 2.
    Uyama H, Kobayash S (1999) Enzymatic polymerization yields useful polyphenols. ChemTech 29:22–28Google Scholar
  3. 3.
    Kadokawa J, Kobayashi S (2010) Polymer synthesis by enzymatic catalysis. Curr Opin Chem Biol 14:145–153PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Uyama H (2007) Artificial polymeric flavonoids: synthesis and applications. Macromol Biosci 7:410–422PubMedCrossRefGoogle Scholar
  5. 5.
    Uyama H, Kobayashi S (2003) Enzymatic synthesis of polyphenols. Curr Org Chem 7:1387–1397CrossRefGoogle Scholar
  6. 6.
    Uyama H, Kobayashi S (2006) Enzymatic synthesis and properties of polymers from polyphenols. Adv Polym Sci 194:51–67CrossRefGoogle Scholar
  7. 7.
    Reihmann M, Ritter H (2006) Synthesis of phenol polymers using peroxidases. Adv Polym Sci 194:1–49CrossRefGoogle Scholar
  8. 8.
    Uyama H, Kobayashi S (1993) Enzymatic ring-opening polymerization of lactones catalyzed by lipase. Chem Lett:1149–1150Google Scholar
  9. 9.
    Knani D, Gutman AL, Kohn DH (1993) Enzymatic polyesterification in organic media – enzyme-catalyzed synthesis of linear polyesters. I. Condensation polymerization of linear Hydroxyesters. II. Ring-opening polymerization of ε-caprolactone. J Polym Sci Pol Chem 31:1221–1232CrossRefGoogle Scholar
  10. 10.
    Matsumura S, Beppu H, Nakamura K et al (1996) Preparation of poly(β-malic acid) by enzymatic ring-opening polymerization of benzyl β-malolactonate. Chem Lett 25:795–796CrossRefGoogle Scholar
  11. 11.
    Namekawa S, Uyama H, Kobayashi S (1996) Lipase-catalyzed ring-opening polymerization and copolymerization of β-propiolactone. Polym J 28:730–731CrossRefGoogle Scholar
  12. 12.
    Svirkin YY, Xu J, Gross RA et al (1996) Enzyme-catalyzed stereoelective ring-opening polymerization of α-methyl-β-propiolactone. Macromolecules 29:4591–4597CrossRefGoogle Scholar
  13. 13.
    Nobes GAR, Kazlauskas RJ, Marchessault RH (1996) Lipase-catalyzed ring-opening polymerization of lactones: a novel route to poly(hydroxyalkanoate)s. Macromolecules 29:4829–4833CrossRefGoogle Scholar
  14. 14.
    Xie WH, Li J, Chen DP et al (1997) Ring-opening polymerization of β-butyrolactone by thermophilic lipases. Macromolecules 30:6997–6998CrossRefGoogle Scholar
  15. 15.
    Matsumura S, Suzuki Y, Tsukada K et al (1998) Lipase-catalyzed ring-opening polymerization of β-butyrolactone to the cyclic and linear poly(3-hydroxybutyrate). Macromolecules 31:6444–6449CrossRefGoogle Scholar
  16. 16.
    Osanai Y, Toshima K, Matsumura S (2000) Lipase-catalyzed reaction of molecularly pure linear and cyclic poly(3-hydroxybutanoate)s: evidence of cyclic polymer formation. Chem Lett 29:576–577CrossRefGoogle Scholar
  17. 17.
    Panova AA, Taktak S, Randriamahefa S et al (2003) Polymerization of propyl malolactonate in the presence of Candida rugosa lipase. Biomacromolecules 4:19–27PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Dong H, Wang HD, Cao SG et al (1998) Lipase-catalyzed polymerization of lactones and linear hydroxyesters. Biotechnol Lett 20:905–908CrossRefGoogle Scholar
  19. 19.
    Nishida H, Yamashita M, Nagashima M et al (2000) Synthesis of metal-free poly(1,4- dioxan- 2-one) by enzyme-catalyzed ring-opening polymerization. J Polym Sci Pol Chem 38:1560–1567Google Scholar
  20. 20.
    Uyama H, Suda S, Kikuchi H et al (1997) Extremely efficient catalysis of immobilized lipase in ring-opening polymerization of lactones. Chem Lett:1109–1110Google Scholar
  21. 21.
    MacDonald RT, Pulapura SK, Svirkin YY et al (1995) Enzyme-catalyzed ε-caprolactone ring-opening polymerization. Macromolecules 28:73–78CrossRefGoogle Scholar
  22. 22.
    Li Q, Li G, Yu S et al (2011) Ring-opening polymerization of ε-caprolactone catalyzed by a novel thermophilic lipase from Fervidobacterium nodosum. Process Biochem (Amsterdam, Neth) 46:253–257CrossRefGoogle Scholar
  23. 23.
    Barrera-Rivera KA, Peponi L, Marcos-Fernandez A et al (2014) Synthesis, characterization and hydrolytic degradation of polyester-urethanes obtained by lipase biocatalysis. Polym Degrad Stab 108:188–194CrossRefGoogle Scholar
  24. 24.
    Kobayashi S, Takeya K, Suda S et al (1998) Lipase-catalyzed ring-opening polymerization of medium-size lactones to polyesters. Macromol Chem Phys 199:1729–1736CrossRefGoogle Scholar
  25. 25.
    Ebata H, Toshima K, Matsumura S (2000) Lipase-catalyzed transformation of poly(ε- caprolactone) into cyclic dicaprolactone. Biomacromolecules 1:511–514Google Scholar
  26. 26.
    Montanier CY, Chabot N, Emond S et al (2017) Engineering of Candida antarctica lipase B for poly(ε-caprolactone) synthesis. Eur Polym J 95:809–819CrossRefGoogle Scholar
  27. 27.
    Küllmer K, Kikuchi H, Uyama H et al (1998) Lipase-catalyzed ring-opening polymerization of α-methyl-δ-valerolactone and α-methyl-ε-caprolactone. Macromol Rapid Commun 19:127–130CrossRefGoogle Scholar
  28. 28.
    Kobayashi S, Uyama H, Namekawa S et al (1998) Enzymatic ring-opening polymerization and copolymerization of 8-octanolide by lipase catalyst. Macromolecules 31:5655–5659CrossRefGoogle Scholar
  29. 29.
    Kumar A, Kalra B, Dekhterman A et al (2000) Efficient ring-opening polymerization and copolymerization of ε-caprolactone and ω-pentadecalactone catalyzed by Candida antartica lipase B. Macromolecules 33:6303–6309CrossRefGoogle Scholar
  30. 30.
    Uyama H, Takeya K, Kobayashi S (1995) Enzymatic ring-opening polymerization of lactones to polyesters by lipase catalyst. -unusually high reactivity of macrolides. Bull Chem Soc Jpn 68:56–61CrossRefGoogle Scholar
  31. 31.
    Uyama H, Takeya K, Hoshi N et al (1995) Lipase-catalyzed ring-opening polymerization of 12-dodecanolide. Macromolecules 28:7046–7050CrossRefGoogle Scholar
  32. 32.
    Uyama H, Kikuchi H, Takeya K et al (1996) Lipase-catalyzed ring-opening polymerization and copolymerization of 15-pentadecanolide. Acta Polym 47:357–360CrossRefGoogle Scholar
  33. 33.
    Bisht KS, Henderson LA, Gross RA et al (1997) Enzyme-catalyzed ring-opening polymerization of ω-pentadecalactone. Macromolecules 30:2705–2711CrossRefGoogle Scholar
  34. 34.
    Namekawa S, Uyama H, Kobayashi S (1998) Lipase-catalyzed ring-opening polymerization of 16-hexadecanolide. Proc Jpn Acad Ser B-Phys Biol Sci 74:65–68CrossRefGoogle Scholar
  35. 35.
    Witt T, Haussler M, Mecking S (2017) No strain, no gain? Enzymatic ring-opening polymerization of strainless aliphatic macrolactones. Macromol Rapid Commun 38(4)Google Scholar
  36. 36.
    Hut YM, Ju LK (2003) Lipase-mediated deacetylation and oligomerization of lactonic sophorolipids. Biotechnol Prog 19:303–311CrossRefGoogle Scholar
  37. 37.
    Gao W, Hagver R, Shah V et al (2007) Glycolipid polymer synthesized from natural lactonic sophorolipids by ring-opening metathesis polymerization. Macromolecules 40:145–147CrossRefGoogle Scholar
  38. 38.
    Zini E, Gazzano M, Scandola M et al (2008) Glycolipid biomaterials: solid-state properties of a poly(sophorolipid). Macromolecules 41:7463–7468CrossRefGoogle Scholar
  39. 39.
    Strandman S, Tsai IH, Lortie R et al (2013) Ring-opening polymerization of bile acid macrocycles by Candida antarctica lipase B. Polym Chem-Uk 4:4312–4316CrossRefGoogle Scholar
  40. 40.
    Morales-Huerta JC, Ciulik CB, de Ilarduya AM et al (2017) Fully bio-based aromatic–aliphatic copolyesters: poly(butylene furandicarboxylate-co-succinate)s obtained by ring opening polymerization. Polym Chem-Uk 8:748–760CrossRefGoogle Scholar
  41. 41.
    Mueller S, Uyama H, Kobayashi S (1999) Lipase-catalyzed ring-opening polymerization of cyclic diesters. Chem Lett 28:1317–1318CrossRefGoogle Scholar
  42. 42.
    Matsumura S, Ebata H, Toshima K (2000) A new strategy for sustainable polymer recycling using an enzyme: poly(ε-caprolactone). Macromol Rapid Commun 21:860–863CrossRefGoogle Scholar
  43. 43.
    Okajima S, Kondo R, Toshima K et al (2003) Lipase-catalyzed transformation of poly(butylene adipate) and poly(butylene succinate) into Repolymerizable cyclic oligomers. Biomacromolecules 4:1514–1519PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Soeda Y, Toshima K, Matsumura S (2005) Synthesis and chemical recycling of novel poly(ester-urethane)s using an enzyme. Macromol Biosci 5:277–288PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Sugihara S, Toshima K, Matsumura S (2006) New strategy for enzymatic synthesis of high- molecular- weight poly(butylene succinate) via cyclic oligomers. Macromol Rapid Commun 27:203–207Google Scholar
  46. 46.
    Morales-Huerta JC, de Ilarduya AM, Muñoz-Guerra S (2017) A green strategy for the synthesis of poly(ethylene succinate) and its copolyesters via enzymatic ring opening polymerization. Eur Polym J 95:514–519CrossRefGoogle Scholar
  47. 47.
    Matsumura S, Mabuchi K, Toshima K (1997) Lipase-catalyzed ring-opening polymerization of lactide. Macromol Rapid Commun 18:477–482CrossRefGoogle Scholar
  48. 48.
    Hans M, Keul H, Moeller M (2009) Ring-opening polymerization of DD-lactide catalyzed by novozyme 435. Macromol Biosci 9:239–247PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Takwa M, Larsen MW, Hult K et al (2011) Rational redesign of Candida antarctica lipase B for the ring opening polymerization of D,D-lactide. Chem Commun (Camb) 47:7392–7394CrossRefGoogle Scholar
  50. 50.
    Omay D, Guvenilir Y (2013) Synthesis and characterization of poly(D,L-lactic acid) via enzymatic ring opening polymerization by using free and immobilized lipase. Biocatal Biotransformation 31:132–140CrossRefGoogle Scholar
  51. 51.
    Srivastava RK, Albertsson AC (2005) High-molecular-weight poly(1,5-dioxepan-2-one) via enzyme-catalyzed ring-opening polymerization. J Polym Sci Pol Chem 43:4206–4216CrossRefGoogle Scholar
  52. 52.
    Srivastava RK, Kumar K, Varma IK et al (2007) Chemo-enzymatic synthesis of comb polymers. Eur Polym J 43:808–817CrossRefGoogle Scholar
  53. 53.
    van der Mee L, Antens A, van de Kruijs B et al (2006) Oxo-crown-ethers as comonomers for tuning polyester properties. J Polym Sci Pol Chem 44:2166–2176CrossRefGoogle Scholar
  54. 54.
    Gross RA, Kumar A, Kalra B (2001) Polymer synthesis by in vitro enzyme catalysis. Chem Rev 101:2097–2124PubMedCrossRefGoogle Scholar
  55. 55.
    Kobayashi S, Uyama H, Kimura S (2001) Enzymatic polymerization. Chem Rev 101:3793–3818PubMedCrossRefGoogle Scholar
  56. 56.
    Cordova A, Iversen T, Martinelle M (1998) Lipase-catalysed formation of macrocycles by ring-opening polymerisation of ε-caprolactone. Polymer 39:6519–6524CrossRefGoogle Scholar
  57. 57.
    Berkane C, Mezoul G, Lalot T et al (1997) Lipase-catalyzed polyester synthesis in organic medium. Study of ring-chain equilibrium. Macromolecules 30:7729–7734CrossRefGoogle Scholar
  58. 58.
    Duda A, Kowalski A, Penczek S et al (2002) Kinetics of the ring-opening polymerization of 6-, 7-, 9-, 12-, 13-, 16-, and 17-membered lactones. Comparison of chemical and enzymatic polymerizations. Macromolecules 35:4266–4270CrossRefGoogle Scholar
  59. 59.
    Uppenberg J, Hansen MT, Patkar S et al (1994) Sequence, crystal-structure determination and refinement of 2 crystal forms of lipase B from Candida antarctica. Structure 2:293–308PubMedCrossRefGoogle Scholar
  60. 60.
    Polloni AE, Chiaradia V, Figura EM et al (2018) Polyesters from macrolactones using commercial lipase NS 88011 and novozym 435 as biocatalysts. Appl Biochem Biotechnol 184:659–672PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    van der Mee L, Helmich F, de Bruijn R et al (2006) Investigation of lipase-catalyzed ring- opening polymerizations of lactones with various ring sizes: kinetic evaluation. Macromolecules 39:5021–5027Google Scholar
  62. 62.
    Kobayashi S, Uyama H, Namekawa S (1998) In vitro biosynthesis of polyesters with isolated enzymes in aqueous systems and organic solvents. Polym Degrad Stab 59:195–201CrossRefGoogle Scholar
  63. 63.
    Kobayashi S, Uyama H (1999) Precision enzymatic polymerization to polyesters with lipase catalysts. Macromol Symp 144:237–246CrossRefGoogle Scholar
  64. 64.
    Namekawa S, Suda S, Uyama H et al (1999) Lipase-catalyzed ring-opening polymerization of lactones to polyesters and its mechanistic aspects. Int J Biol Macromol 25:145–151PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Huisgen R, Ott H (1959) Die konfiguration der carbonestergruppe und die Sondereigenschaften der lactone. Tetrahedron 6:253–267CrossRefGoogle Scholar
  66. 66.
    Veld MAJ, Fransson L, Palmans ARA et al (2009) Lactone size dependent reactivity in Candida antarctica lipase B: a molecular dynamics and docking study. Chembiochem: Eur J Chem Biol 10:1330–1334CrossRefGoogle Scholar
  67. 67.
    Hunsen M, Abul A, Xie WC et al (2008) Humicola insolens cutinase-catalyzed lactone ring- opening polymerizations: kinetic and mechanistic studies. Biomacromolecules 9:518–522Google Scholar
  68. 68.
    Miletic N, Vukovic Z, Nastasovic A et al (2009) Macroporous poly(glycidyl methacrylate-co- ethylene glycol dimethacrylate) resins-versatile immobilization supports for biocatalysts. J Mol Catal B Enzym 56:196–201Google Scholar
  69. 69.
    Poojari Y, Beemat JS, Clarson SJ (2013) Enzymatic synthesis of poly(ε-caprolactone): thermal properties, recovery, and reuse of lipase B from Candida antarctica immobilized on macroporous acrylic resin particles. Polym Bull (Heidelberg, Ger) 70:1543–1552Google Scholar
  70. 70.
    Omay D (2014) Immobilization of lipase onto a photo-crosslinked polymer network: characterization and polymerization applications. Biocatal Biotransformation 32:132–140CrossRefGoogle Scholar
  71. 71.
    Ozturk Duskunkorur H, Pollet E, Phalip V et al (2014) Lipase catalyzed synthesis of polycaprolactone and clay-based nanohybrids. Polymer 55:1648–1655CrossRefGoogle Scholar
  72. 72.
    Kobayashi S (ed) (1997) Catalysis in precision polymerization. Wiley, ChichesterGoogle Scholar
  73. 73.
    Engel S, Höck H, Bocola M et al (2016) CaLB catalyzed conversion of ε-caprolactone in aqueous medium. Part 1: immobilization of CaLB to microgels. Polymers 8:372PubMedCentralCrossRefGoogle Scholar
  74. 74.
    Hans M, Gasteier P, Keul H et al (2006) Ring-opening polymerization of ε-caprolactone by means of mono- and multifunctional initiators: comparison of chemical and enzymatic catalysis. Macromolecules 39:3184–3193CrossRefGoogle Scholar
  75. 75.
    Skaria S, Smet M, Frey H (2002) Enzyme-catalyzed synthesis of hyperbranched aliphatic polyesters. Macromol Rapid Commun 23:292–296CrossRefGoogle Scholar
  76. 76.
    Kerep P, Ritter H (2006) Influence of microwave irradiation on the lipase-catalyzed ring- opening polymerization of ε-caprolactone. Macromol Rapid Commun 27:707–710Google Scholar
  77. 77.
    Matos TD, King N, Simmons L et al (2011) Microwave assisted lipase catalyzed solvent-free poly-ε-caprolactone synthesis. Green Chem Lett Rev 4:73–79CrossRefGoogle Scholar
  78. 78.
    Scherkus C, Schmidt S, Bornscheuer UT et al (2016) A fed-batch synthetic strategy for a three-step enzymatic synthesis of poly-ϵ-caprolactone. ChemCatChem 8:3446–3452CrossRefGoogle Scholar
  79. 79.
    Uyama H, Takeya K, Kobayashi S (1993) Synthesis of polyesters by enzymatic ring-opening copolymerization using lipase catalyst. Proc Jpn Acad Ser B-Phys Biol Sci 69:203–207CrossRefGoogle Scholar
  80. 80.
    Namekawa S, Uyama H, Kobayashi S (2001) Lipase-catalyzed ring-opening polymerization of lactones in the presence of aliphatic polyesters to Ester copolymers. Macromol Chem Phys 202:801–806CrossRefGoogle Scholar
  81. 81.
    Jiang ZZ, Azim H, Gross RA et al (2007) Lipase-catalyzed copolymerization of ω-pentadecalactone with p-dioxanone and characterization of copolymer thermal and crystalline properties. Biomacromolecules 8:2262–2269PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Wahlberg J, Persson PV, Olsson T et al (2003) Structural characterization of a lipase- catalyzed copolymerization of ε-caprolactone and d,l-lactide. Biomacromolecules 4:1068–1071Google Scholar
  83. 83.
    Huijser S, Staal BBP, Huang J et al (2006) Topology characterization by MALDI-TOF-MS of enzymatically synthesized poly(lactide-co-glycolide). Biomacromolecules 7:2465–2469PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Numata K, Srivastava RK, Finne-Wistrand A et al (2007) Branched poly(lactide) synthesized by enzymatic polymerization: effects of molecular branches and stereochemistry on enzymatic degradation and alkaline hydrolysis. Biomacromolecules 8:3115–3125PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Namekawa S, Uyama H, Kobayashi S (2000) Enzymatic synthesis of polyesters from lactones, dicarboxylic acid divinyl esters, and glycols through combination of ring-opening polymerization and polycondensation. Biomacromolecules 1:335–338PubMedCrossRefGoogle Scholar
  86. 86.
    Kikuchi H, Uyama H, Kobayashi S (2000) Lipase-catalyzed enantioselective copolymerization of substituted lactones to optically active polyesters. Macromolecules 33:8971–8975CrossRefGoogle Scholar
  87. 87.
    Al-Azemi TF, Kondaveti L, Bisht KS (2002) Solventless enantioelective ring-opening polymerization of substituted ε-caprolactones by enzymatic catalysis. Macromolecules 35:3380–3386CrossRefGoogle Scholar
  88. 88.
    Peeters JW, van Leeuwen O, Palmans ARA et al (2005) Lipase-catalyzed ring-opening polymerizations of 4-substituted ε-caprolactones: mechanistic considerations. Macromolecules 38:5587–5592CrossRefGoogle Scholar
  89. 89.
    van As BAC, van Buijtenen J, Heise A et al (2005) Chiral oligomers by iterative tandem catalysis. J Am Chem Soc 127:9964–9965PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    van Buijtenen J, van As BAC, Meuldijk J et al (2006) Chiral polymers by iterative tandem catalysis. Chem Commun:3169–3171Google Scholar
  91. 91.
    Zhou JX, Wang WX, Thurecht KJ et al (2006) Simultaneous dynamic kinetic resolution in combination with enzymatic ring-opening polymerization. Macromolecules 39:7302–7305CrossRefGoogle Scholar
  92. 92.
    Uyama H, Kobayashi S, Morita M et al (2001) Chemoselective ring-opening polymerization of a lactone having exo-methylene group with lipase catalysis. Macromolecules 34:6554–6556CrossRefGoogle Scholar
  93. 93.
    Habaue S, Asai M, Morita M et al (2003) Chemospecific ring-opening polymerization of α-methylenemacrolides. Polymer 44:5195–5200CrossRefGoogle Scholar
  94. 94.
    Uyama H, Suda S, Kobayashi S (1999) Enzymatic synthesis of terminal-functionalized polyesters by initiator method. Acta Polym 49:700–703CrossRefGoogle Scholar
  95. 95.
    Castano M, Zheng J, Puskas JE et al (2014) Enzyme-catalyzed ring-opening polymerization of ε-caprolactone using alkyne functionalized initiators. Polym Chem 5:1891–1896CrossRefGoogle Scholar
  96. 96.
    Srivastava RK, Albertsson AC (2006) Enzyme-catalyzed ring-opening polymerization of seven-membered ring lactones leading to terminal-functionalized and triblock polyesters. Macromolecules 39:46–54CrossRefGoogle Scholar
  97. 97.
    Kalra B, Kumar A, Gross RA et al (2004) Chemoenzymatic synthesis of new brush copolymers comprising poly(ω-pentadecalactone) with unusual thermal and crystalline properties. Macromolecules 37:1243–1250CrossRefGoogle Scholar
  98. 98.
    Zhu N, Zhang Z-L, He W et al (2014) Highly chemoselective lipase from Candida sp. 99-125 catalyzed ring-opening polymerization for direct synthesis of thiol-terminated poly(ε- caprolactone). Chin Chem Lett 26:361–364Google Scholar
  99. 99.
    Korzhikov VA, Gusevskaya KV, Litvinchuk EN et al (2013) Enzyme-mediated ring-opening polymerization of pentadecalactone to obtain biodegradable polymer for fabrication of scaffolds for bone tissue engineering. Int J Polym Sci 2013:476748CrossRefGoogle Scholar
  100. 100.
    Bisht KS, Deng F, Gross RA et al (1998) Ethyl glucoside as a multifunctional initiator for enzyme-catalyzed regioselective lactone ring-opening polymerization. J Am Chem Soc 120:1363–1367CrossRefGoogle Scholar
  101. 101.
    Cordova A, Iversen T, Hult K (1998) Lipase-catalyzed synthesis of methyl 6-O-poly(ε- caprolactone)glycopyranosides. Macromolecules 31:1040–1045Google Scholar
  102. 102.
    Cordova A, Hult A, Hult K et al (1998) Synthesis of a poly(ε-caprolactone) monosubstituted first generation dendrimer by lipase catalysis. J Am Chem Soc 120:13521–13522CrossRefGoogle Scholar
  103. 103.
    Qian X, Wang J, Li Y et al (2014) Two enzyme cooperatively catalyzed tandem polymerization for the synthesis of polyester containing chiral (R)- or (S)-ibuprofen pendants. Macromol Rapid Commun 35:1788–1794CrossRefGoogle Scholar
  104. 104.
    Gustavsson MT, Persson PV, Iversen T et al (2004) Polyester coating of cellulose fiber surfaces catalyzed by a cellulose-binding module-Candida antarctica lipase B fusion protein. Biomacromolecules 5:106–112PubMedCrossRefGoogle Scholar
  105. 105.
    de Geus M, Peters R, Koning CE et al (2008) Insights into the initiation process of enzymatic ring-opening polymerization from monofunctional alcohols using liquid chromatography under critical conditions. Biomacromolecules 9:752–757PubMedCrossRefGoogle Scholar
  106. 106.
    Takwa M, Xiao Y, Simpson N et al (2008) Lipase catalyzed HEMA initiated ring-opening polymerization: in situ formation of mixed polyester methacrylates by transesterification. Biomacromolecules 9:704–710PubMedCrossRefGoogle Scholar
  107. 107.
    Xiao Y, Takwa M, Hult K et al (2009) Systematic comparison of HEA and HEMA as initiators in enzymatic ring-opening polymerizations. Macromol Biosci 9:713–720PubMedCrossRefGoogle Scholar
  108. 108.
    Hedfors C, Ostmark E, Malmstrom E et al (2005) Thiol end-functionalization of poly(ε- caprolactone), catalyzed by Candida antarctica lipase B. Macromolecules 38:647–649Google Scholar
  109. 109.
    Yoon KR, Lee KB, Chi YS et al (2003) Surface-initiated, enzymatic polymerization of biodegradable polyesters. Adv Mater 15:2063–2066CrossRefGoogle Scholar
  110. 110.
    Kim YR, Paik HJ, Ober CK et al (2004) Enzymatic surface-initiated polymerization: a novel approach for the in situ solid-phase synthesis of biocompatible polymer poly(3- hydroxybutyrate). Biomacromolecules 5:889–894Google Scholar
  111. 111.
    Hans M, Keul H, Moeller M (2008) Poly(ether-ester) conjugates with enhanced degradation. Biomacromolecules 9:2954–2962PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Uyama H, Kikuchi H, Kobayashi S (1995) One-shot synthesis of polyester macromonomer by enzymatic ring-opening polymerization of lactone in the presence of vinyl Ester. Chem Lett:1047–1048Google Scholar
  113. 113.
    Uyama H, Kikuchi H, Kobayashi S (1997) Single-step acylation of polyester terminals by enzymatic ring-opening polymerization of 12-dodecanolide in the presence of acyclic vinyl esters. Bull Chem Soc Jpn 70:1691–1695CrossRefGoogle Scholar
  114. 114.
    Takwa M, Simpson N, Malmstrom E et al (2006) One-pot difunctionalization of poly(ω- pentadecalactone) with thiol-thiol or thiol-acrylate groups, catalyzed by Candida antarctica lipase B. Macromol Rapid Commun 27:1932–1936Google Scholar
  115. 115.
    Simpson N, Takwa M, Hult K et al (2008) Thiol-functionalized poly(ω-pentadecalactone) telechelics for semicrystalline polymer networks. Macromolecules 41:3613–3619CrossRefGoogle Scholar
  116. 116.
    Cordova A (2001) Synthesis of amphiphilic poly(ε-caprolactone) macromonomers by lipase catalysis. Biomacromolecules 2:1347–1351PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Li J, Xie WH, Cheng HN et al (1999) Polycaprolactone-modified hydroxyethylcellulose films prepared by lipase-catalyzed ring-opening polymerization. Macromolecules 32:2789–2792CrossRefGoogle Scholar
  118. 118.
    Kumar R, Gross RA (2002) Biocatalytic route to well-defined macromers built around a sugar core. J Am Chem Soc 124:1850–1851PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Kumar A, Gross RA (2000) Candida antartica lipase B catalyzed polycaprolactone synthesis: effects of organic media and temperature. Biomacromolecules 1:133–138PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Polloni AE, Rebelatto EA, Veneral JG et al (2017) Enzymatic ring opening polymerization of ω-pentadecalactone in different solvents in a variable-volume view reactor. J Polym Sci A Polym Chem 55:1219–1227CrossRefGoogle Scholar
  121. 121.
    Namekawa S, Uyama H, Kobayashi S (1998) Lipase-catalyzed ring-opening polymerization of lactones in water. Polym J 30:269–271CrossRefGoogle Scholar
  122. 122.
    Panlawan P, Luangthongkam P, Wiemann LO et al (2013) Lipase-catalyzed interfacial polymerization of ω-pentadecalactone in aqueous biphasic medium: a mechanistic study. J Mol Catal B Enzym 88:69–76CrossRefGoogle Scholar
  123. 123.
    Inprakhon P, Panlawan P, Pongtharankul T et al (2014) Toward one-oot lipase-catalyzed synthesis of poly(ε-caprolactone) particles in aqueous dispersion. Colloids Surf B Biointerfaces 113:254–260PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Taden A, Antonietti M, Landfester K (2003) Enzymatic polymerization towards biodegradable polyester nanoparticles. Macromol Rapid Commun 24:512–516CrossRefGoogle Scholar
  125. 125.
    Malberg S, Finne-Wistrand A, Albertsson A-C (2010) The environmental influence in enzymatic polymerization of aliphatic polyesters in bulk and aqueous mini-emulsion. Polymer 51:5318–5322CrossRefGoogle Scholar
  126. 126.
    Sharma E, Samanta A, Pal J et al (2016) High internal phase emulsion ring-opening polymerization of pentadecanolide: strategy to obtain porous scaffolds in a single step. Macromol Chem Phys 217:1752–1758CrossRefGoogle Scholar
  127. 127.
    Nallani M, de Hoog HPM, Cornelissen J et al (2007) Polymersome nanoreactors for enzymatic ring-opening polymerization. Biomacromolecules 8:3723–3728PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Takamoto T, Uyama H, Kobayashi S (2001) Lipase-catalyzed synthesis of aliphatic polyesters in supercritical carbon dioxide. e-polymers 4:1–6Google Scholar
  129. 129.
    Loeker FC, Duxbury CJ, Kumar R et al (2004) Enzyme-catalyzed ring-opening polymerization of ε-caprolactone in supercritical carbon dioxide. Macromolecules 37:2450–2453CrossRefGoogle Scholar
  130. 130.
    Thurecht KJ, Heise A, deGeus M et al (2006) Kinetics of enzymatic ring-opening polymerization of ε-caprolactone in supercritical carbon dioxide. Macromolecules 39:7967–7972CrossRefGoogle Scholar
  131. 131.
    Polloni AE, Veneral JG, Rebelatto EA et al (2017) Enzymatic ring opening polymerization of ω-pentadecalactone using supercritical carbon dioxide. J Supercrit Fluids 119:221–228CrossRefGoogle Scholar
  132. 132.
    Takamoto T, Uyama H, Kobayashi S (2001) Lipase-catalyzed degradation of polyester in supercritical carbon dioxide. Macromol Biosci 1:215–218CrossRefGoogle Scholar
  133. 133.
    Matsumura S, Ebata H, Kondo R et al (2001) Organic solvent-free enzymatic transformation of poly (ε-caprolactone) into repolymerizable oligomers in supercritical carbon dioxide. Macromol Rapid Commun 22:1326–1329Google Scholar
  134. 134.
    Duxbury CJ, Wang WX, de Geus M et al (2005) Can block copolymers be synthesized by a single-step chemoenzymatic route in supercritical carbon dioxide. J Am Chem Soc 127:2384–2385PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Villarroya S, Zhou JX, Duxbury CJ et al (2006) Synthesis of semifluorinated block copolymers containing, poly(ε-caprolactone) by the combination of ATRP and enzymatic ROP in ScCO2. Macromolecules 39:633–640CrossRefGoogle Scholar
  136. 136.
    Zhou JX, Villarroya S, Wang WX et al (2006) One-step chemoenzymatic synthesis of poly(ε-caprolactone-block-methyl methacrylate) in supercritical CO2. Macromolecules 39:5352–5358CrossRefGoogle Scholar
  137. 137.
    Lopez-Luna A, Gallegos JL, Gimeno M et al (2010) Lipase-catalyzed syntheses of linear and hyperbranched polyesters using compressed fluids as solvent media. J Mol Catal B Enzym 67:143–149CrossRefGoogle Scholar
  138. 138.
    Kubisa P (2005) Ionic liquids in the synthesis and modification of polymers. J Polym Sci Pol Chem 43:4675–4683CrossRefGoogle Scholar
  139. 139.
    Uyama H, Takamoto T, Kobayashi S (2002) Enzymatic synthesis of polyesters in ionic liquids. Polym J 34:94–96CrossRefGoogle Scholar
  140. 140.
    Marcilla R, de Geus M, Mecerreyes D et al (2006) Enzymatic polyester synthesis in ionic liquids. Eur Polym J 42:1215–1221CrossRefGoogle Scholar
  141. 141.
    Yoshizawa-Fujita M, Saito C, Takeoka Y et al (2008) Lipase-catalyzed polymerization of L-lactide in ionic liquids. Polym Adv Technol 19:1396–1400CrossRefGoogle Scholar
  142. 142.
    Mena M, Lopez-Luna A, Shirai K et al (2013) Lipase-catalyzed synthesis of hyperbranched poly-L-lactide in an ionic liquid. Bioprocess Biosyst Eng 36:383–387PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Barrera-Rivera KA, Marcos-Fernandez A, Vera-Graziano R et al (2009) Enzymatic ring- opening polymerization of ε-caprolactone by Yarrowia lipolytica lipase in ionic liquids. J Polym Sci Part A: Polym Chem 47:5792–5805Google Scholar
  144. 144.
    Wu C, Zhang Z, He F et al (2013) Enzymatic synthesis of poly(ε-caprolactone) in monocationic and dicationic ionic liquids. Biotechnol Lett 35:879–885PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Wu C, Zhang Z, Chen C et al (2013) Synthesis of poly(ε-caprolactone) by an immobilized lipase coated with ionic liquids in a solvent-free condition. Biotechnol Lett 35:1623–1630PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Zhao H, Nathaniel GA, Merenini PC (2017) Enzymatic ring-opening polymerization (ROP) of lactides and lactone in ionic liquids and organic solvents: digging the controlling factors. RSC Adv 7:48639–48648CrossRefGoogle Scholar
  147. 147.
    Piotrowska U, Sobczak M, Oledzka E (2017) Characterization of aliphatic polyesters synthesized via enzymatic ring-opening polymerization in ionic liquids. Molecules 22Google Scholar
  148. 148.
    Gumel AM, Annuar MSM, Chisti Y et al (2012) Ultrasound assisted lipase catalyzed synthesis of poly-6-hydroxyhexanoate. Ultrason Sonochem 19:659–667PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Kundu S, Bhangale AS, Wallace WE et al (2011) Continuous flow enzyme-catalyzed polymerization in a microreactor. J Am Chem Soc 133:6006–6011PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Bhangale AS, Beers KL, Gross RA (2012) Enzyme-catalyzed polymerization of end- functionalized polymers in a microreactor. Macromolecules (Washington, DC, U S) 45:7000–7008Google Scholar
  151. 151.
    Deng F, Bisht KS, Gross RA et al (1999) Chemoenzymatic synthesis of a multiarm poly(lactide-co-ε-caprolactone). Macromolecules 32:5159–5161CrossRefGoogle Scholar
  152. 152.
    Meyer U, Palmans ARA, Loontjens T et al (2002) Enzymatic ring-opening polymerization and atom transfer radical polymerization from a bifunctional initiator. Macromolecules 35:2873–2875CrossRefGoogle Scholar
  153. 153.
    Matyjaszewski K, Xia JH (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Peeters J, Palmans ARA, Veld M et al (2004) Cascade synthesis of chiral block copolymers combining lipase catalyzed ring opening polymerization and atom transfer radical polymerization. Biomacromolecules 5:1862–1868PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    de Geus M, Peeters J, Wolffs M et al (2005) Investigation of factors influencing the chemoenzymatic synthesis of block copolymers. Macromolecules 38:4220–4225CrossRefGoogle Scholar
  156. 156.
    Peeters JW, Palmans ARA, Meijer EW et al (2005) Chemoenzymatic synthesis of branched polymers. Macromol Rapid Commun 26:684–689CrossRefGoogle Scholar
  157. 157.
    van As BAC, Thomassen P, Kalra B et al (2004) One-pot chemoenzymatic cascade polymerization under kinetic resolution conditions. Macromolecules 37:8973–8977CrossRefGoogle Scholar
  158. 158.
    de Geus M, Schormans L, Palmans AA et al (2006) Block copolymers by chemoenzymatic cascade polymerization: a comparison of consecutive and simultaneous reactions. J Polym Sci Pol Chem 44:4290–4297CrossRefGoogle Scholar
  159. 159.
    Pflughaupt RL, Hopkins SA, Wright PM et al (2016) Synthesis of poly(ω-pentadecalactone)-b-poly(acrylate) diblock copolymers via a combination of enzymatic ring-opening and RAFT polymerization techniques. J Polym Sci A Polym Chem 54:3326–3335CrossRefGoogle Scholar
  160. 160.
    Sha K, Li DS, Wang SW et al (2005) Synthesis and characterization of diblock copolymer by enzymatic ring-opening polymerization and ATRP from a novel bifunctional initiator. Polym Bull 55:349–355CrossRefGoogle Scholar
  161. 161.
    Sha K, Li DS, Li YP et al (2007) Synthesis, characterization, and micellization of an epoxy- based amphiphilic diblock copolymer of ε-caprolactone and glycidyl methacrylate by enzymatic ring-opening polymerization and atom transfer radical polymerization. J Polym Sci Pol Chem 45:5037–5049Google Scholar
  162. 162.
    Sha K, Li DS, Li YP et al (2006) Chemoenzymatic synthesis of an AB-type diblock copolymer combining enzymatic self-condensation polymerization and atom transfer radical polymerization. J Polym Sci Pol Chem 44:3393–3399CrossRefGoogle Scholar
  163. 163.
    Hans M, Keul H, Heise A et al (2007) Chemoenzymatic approach toward heterografted molecular bottle brushes. Macromolecules 40:8872–8880CrossRefGoogle Scholar
  164. 164.
    Hao XJ, Albertin L, Foster LJR et al (2003) A new chemo-enzymatic route to side-chain liquid- crystalline polymers: the synthesis and polymerization of 6-(4-methoxybiphenyl- 4’-oxy)hexyl vinyl hexanedioate. Macromol Biosci 3:675–683Google Scholar
  165. 165.
    Popescu D, Keul H, Moeller M (2009) Highly functional poly(meth)acrylates via cascade reaction. Macromol Chem Phys 210:123–139Google Scholar
  166. 166.
    Dai SY, Li Z (2008) Enzymatic preparation of novel thermoplastic di-block copolyesters containing poly[(R)-3-hydroxybutyrate] and poly(ε-caprolactone) blocks via ring-opening polymerization. Biomacromolecules 9:1883–1893PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Bonduelle C, Martin-Vaca B, Bourissou D (2009) Lipase-catalyzed ring-opening polymerization of the O-carboxylic anhydride derived from lactic acid. Biomacromolecules 10:3069–3073PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Kobayashi S, Kikuchi H, Uyama H (1997) Lipase-catalyzed ring-opening polymerization of 1,3-dioxan-2-one. Macromol Rapid Commun 18:575–579CrossRefGoogle Scholar
  169. 169.
    Bisht KS, Svirkin YY, Henderson LA et al (1997) Lipase-catalyzed ring-opening polymerization of trimethylene carbonate. Macromolecules 30:7735–7742CrossRefGoogle Scholar
  170. 170.
    Chen R-Y, Zhang Y-R, Wang Y-Z (2009) Synthesis of poly(1,4-dioxan-2-one) catalyzed by immobilized lipase CA. J Mol Catal B Enzym 57:224–228CrossRefGoogle Scholar
  171. 171.
    Matsumura S, Tsukada K, Toshima K (1997) Enzyme-catalyzed ring-opening polymerization of 1,3-dioxan-2-one to poly(trimethylene carbonate). Macromolecules 30:3122–3124CrossRefGoogle Scholar
  172. 172.
    Yamamoto Y, Kaihara S, Toshima K et al (2009) High-molecular-weight polycarbonates synthesized by enzymatic ROP of a cyclic carbonate as a green process. Macromol Biosci 9:968–978PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Wang H-F, Su W, Zhang C et al (2010) Biocatalytic fabrication of fast-degradable, water- soluble polycarbonate functionalized with tertiary amine groups in backbone. Biomacromolecules 11:2550–2557Google Scholar
  174. 174.
    Feng J, Wang H-F, Zhang X-Z et al (2009) Investigation on lipase-catalyzed solution polymerization of cyclic carbonate. Eur Polym J 45:523–529CrossRefGoogle Scholar
  175. 175.
    Wu R, Al-Azemi TF, Bisht KS (2008) Functionalized polycarbonate derived from tartaric acid: enzymatic ring-opening polymerization of a seven-membered cyclic carbonate. Biomacromolecules 9:2921–2928PubMedCrossRefGoogle Scholar
  176. 176.
    Namekawa S, Uyama H, Kobayashi S et al (2000) Lipase-catalyzed ring-opening polymerization and copolymerization of cyclic dicarbonates. Macromol Chem Phys 201:261–264CrossRefGoogle Scholar
  177. 177.
    He F, Jia HL, Liu G et al (2006) Enzymatic synthesis and characterization of novel biodegradable copolymers of 5-benzyloxy-trimethylene carbonate with 1,4-dioxan-2-one. Biomacromolecules 7:2269–2273PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Al-Azemi TF, Harmon JP, Bisht KS (2000) Enzyme-catalyzed ring-opening copolymerization of 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one (MBC) with trimethylene carbonate (TMC): synthesis and characterization. Biomacromolecules 1:493–500PubMedCrossRefGoogle Scholar
  179. 179.
    Kaihara S, Fisher JP, Matsumura S (2009) Chemo-enzymatic synthesis of degradable PTMC- b- PECA-b-PTMC triblock copolymers and their micelle formation for pH-dependent controlled release. Macromol Biosci 9:613–621Google Scholar
  180. 180.
    Feng YK, Knufermann J, Klee D et al (1999) Enzyme-catalyzed ring-opening polymerization of 3(S)-isopropylmorpholine-2,5-dione. Macromol Rapid Commun 20:88–90CrossRefGoogle Scholar
  181. 181.
    Feng YK, Klee D, Keul H et al (2000) Lipase-catalyzed ring-opening polymerization of morpholine- 2,5-dione derivatives: a novel route to the synthesis of poly(ester amide)s. Macromol Chem Phys 201:2670–2675Google Scholar
  182. 182.
    Feng Y, Klee D, Höcker H (2004) Lipase catalyzed copolymerization of 3(S)-isopropylmorpholine-2,5-dione and D,L-lactide. Macromol Biosci 4:587–590PubMedCrossRefGoogle Scholar
  183. 183.
    Feng YK, Klee D, Höcker H (2005) Lipase-catalyzed ring-opening polymerization of 6(S)-methyl-morpholine-2,5-dione. J Polym Sci Pol Chem 43:3030–3039CrossRefGoogle Scholar
  184. 184.
    Wen J, Zhuo RX (1998) Enzyme-catalyzed ring-opening polymerization of ethylene isopropyl phosphate. Macromol Rapid Commun 19:641–642CrossRefGoogle Scholar
  185. 185.
    He F, Zhuo RX, Liu LJ et al (2001) Immobilized lipase on porous silica beads: preparation and application for enzymatic ring-opening polymerization of cyclic phosphate. React Funct Polym 47:153–158CrossRefGoogle Scholar
  186. 186.
    Iwata S, Toshima K, Matsumura S (2003) Enzyme-catalyzed preparation of aliphatic polyesters containing thioester linkages. Macromol Rapid Commun 24:467–471CrossRefGoogle Scholar
  187. 187.
    Kato M, Toshima K, Matsumura S (2005) Preparation of aliphatic poly(thioester) by the lipase- catalyzed direct polycondensation of 11-mercaptoundecanoic acid. Biomacromolecules 6:2275–2280Google Scholar
  188. 188.
    Kato M, Toshima K, Matsumura S (2007) Enzymatic synthesis of Polythioester by the ring- opening polymerization of cyclic Thioester. Biomacromolecules 8:3590–3596Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Graduate School of EngineeringOsaka UniversitySuitaJapan
  2. 2.Kyoto University, Yoshida-honmachiSakyo-kuJapan

Personalised recommendations