Advertisement

Natural Terpenes as Building Blocks for Green Chemistry

  • Mohamed TouaibiaEmail author
  • Chahrazed Boutekedjiret
  • Sandrine Perino
  • Farid Chemat
Chapter
Part of the Green Chemistry and Sustainable Technology book series (GCST)

Abstract

This chapter presents a complete picture of current knowledge on recent developments of extraction techniques of essential oils’ source of terpenes and their use not only in food ingredients as aromas, antioxidants or antimicrobials but also as synthons and solvents for green chemistry. The modern applications of terpenes and their original procedures are summarized in terms of their applications, benefits and future trends.

Keywords

Terpene Extraction Synthon Solvent Antioxidant Antimicrobial 

References

  1. 1.
    Breitmaier E (2006) Terpenes: flavors, fragrances, pharmaca, pheromones. Wiley-VCH, Weinheim, GermanyCrossRefGoogle Scholar
  2. 2.
    Rude MA, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12:274–281CrossRefGoogle Scholar
  3. 3.
    Wilbon PA, Chu F, Tang C (2013) Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol Rapid Commun 34:8–37CrossRefGoogle Scholar
  4. 4.
    Blaser HU (1992) The chiral pool as a source of enantioselective catalysts and auxiliaries. Chem Rev 92:935–952CrossRefGoogle Scholar
  5. 5.
    Agar D (2005) Handbook of chiral chemicals, 2nd edn. CRC Press, Taylor & Francis, Boca Raton, FLGoogle Scholar
  6. 6.
    Hanessian S (1983) Total synthesis of natural products: the chiron approach. Pergamon Press, OxfordGoogle Scholar
  7. 7.
    Nakata M (2008) Monosaccharides as chiral pools for the synthesis of complex natural compounds. In: FraserReid BO, Tatsuta K, Thiem J (eds) Glycoscience, 2nd edn, vol. 2: Chapter 4.4. Springer-Verlag, Berlin, pp 957–994CrossRefGoogle Scholar
  8. 8.
    Chida N, Sato T (2012) Chiral pool synthesis: chiral pool syntheses starting from carbohydrates. In: Comprehensive chirality vol. 2. Elsevier, pp 207–239Google Scholar
  9. 9.
    Paek SM, Jeong M, Jo J, Heo YM, Han YT, Yun H (2016) Recent advances in substrate-controlled asymmetric induction derived from chiral pool α-amino acids for natural product synthesis. Molecules 21:951CrossRefGoogle Scholar
  10. 10.
    Ho TL (1992) Enantioselective synthesis. natural products from chiral terpenes. Wiley, New YorkGoogle Scholar
  11. 11.
    Money T, Wong MKC (1995) The use of cyclic Monoterpenoids as Enantiopure starting materials in natural product synthesis. Stud Nat Prod Chem 16:123–288CrossRefGoogle Scholar
  12. 12.
    Maimone TJ, Baran PS (2007) Modern synthetic efforts toward biologically active terpenes. Nat Chem Biol 3:396–407CrossRefGoogle Scholar
  13. 13.
    Jansen DJ, Shenvi RA (2014) Synthesis of medicinally relevant terpenes: reducing the cost and time of drug discovery. Future Med. Chem. 6:1127–1148CrossRefGoogle Scholar
  14. 14.
    Qiao T, Liang G (2016) Recent advances in terpenoid synthesis from China. Sci. China: Chem. 59:1142–1174CrossRefGoogle Scholar
  15. 15.
    Urabe D, Asaba T, Inoue M (2015) Convergent strategies in total syntheses of complex terpenoids. Chem Rev 115:9207–9231CrossRefGoogle Scholar
  16. 16.
    Poliakoff M, Fitzpatrick JM, Farren TR, Anastas PT (2002) Green chemistry: science and politics of change. Science 297:807–810CrossRefGoogle Scholar
  17. 17.
    De Oliveira AA, Da Silva ML, Da Silva MJ (2009) Palladium-catalysed oxidation of bicycle monoterpenes by hydrogen peroxide in acetonitrile solutions: a metal reoxidant-free and environmentally oxidative process. Catal Lett 130:424–431CrossRefGoogle Scholar
  18. 18.
    Vieira CG, de Freitas MC, de Oliveira KC, de Camargo Faria A, dos Santos EN, Gusevskaya EV (2015) Synthesis of fragrance compounds from renewable resources: the aqueous biphasic hydroformylation of acyclic terpenes. Catal Sci Technol 5:960–966CrossRefGoogle Scholar
  19. 19.
    Miyazawa M, Teranishi A, Ishikawa Y (2003) Components of the essential oil from Petasites japonicas. Flavour Frag. J. 18:231–233CrossRefGoogle Scholar
  20. 20.
    Loubidi M, Agustin D, Benharref A, Poli R (2014) Solvent-free epoxidation of himachalenes and their derivatives by TBHP using [MoO2(SAP)]2 as a catalyst. C R Chimie 17:549–556CrossRefGoogle Scholar
  21. 21.
    Rodilla JM, Neves PP, Pombal S, Rives V, Trujillano R, Díez D (2016) Hydrotalcite catalysis for the synthesis of new chiral building blocks. Nat Prod Res 30:834–840CrossRefGoogle Scholar
  22. 22.
    Bookin AS, Drits VA (2001) Layered double hydroxides: present and future. Crystal structure and X-ray identification of layered double hydroxides. In: Rives V (ed), Chapter 2. Nova Sci. Pub. Co, Inc., New York pp 39–92Google Scholar
  23. 23.
    Kryshtal GV, Zhdankina GM, Ignat’ev NV, Schulte M, Zlotin SG (2016) The orthoester Johnson–Claisen rearrangement of allylic terpenols in the presence of acidic ionic liquid. J Flu Chem 183:23–29Google Scholar
  24. 24.
    Zlotin SG, Kryshtal GV, Zhdankina GM, Sukhanova AA, Kucherenko AS, Smirnov BB, Tartakovsky VA (2014) Kinetic resolution of racemic (cyclohexyl)(geranyl)acetic acid. Mendeleev Commun 24:257–2259CrossRefGoogle Scholar
  25. 25.
    Cotta RF, da Silva Rocha KA, Kozhevnikova EF, Kozhevnikov IV, Gusevskaya EV (2017) Coupling of monoterpenic alkenes and alcohols with benzaldehyde catalyzed by silica-supported tungstophosphoric heteropoly acid. Catal Today 289:14–19CrossRefGoogle Scholar
  26. 26.
    Cotta RF, da Silva Rocha KA, Kozhevnikova EF, Kozhevnikov IV, Gusevskaya EV (2017) Heteropoly acid catalysts in upgrading of biorenewables: cycloaddition of aldehydes to monoterpenes in green solvents. Catalysis B Environ 217:92–99CrossRefGoogle Scholar
  27. 27.
    Saha P, Gogoi P, Saikia AK (2011) Synthesis of oxabicyclo[3.3.1]nonenes and substituted tetrahydropyrans via (3,5)-oxonium-ene reaction. Org Biomol Chem 9:4626–4634CrossRefGoogle Scholar
  28. 28.
    Luska KL, Migowski P, El Sayed S, Leitner W (2016) Bifunctional ruthenium nanoparticle-SILP Catalysts (RuNPs@SILP) for the hydrodeoxygenation of eucalyptol under batch and continuous flow conditions. ACS Sustain Chem Eng 4:6186–6192CrossRefGoogle Scholar
  29. 29.
    Mimoun H (1996) Catalytic opportunities in the flavor and fragrance industry. CHIMIA Int J Chem 50:620–625Google Scholar
  30. 30.
    Li Y, Fabiano-Tixier AS, Chemat F (2014) Essential oils as reagents in green chemistry, SpringerGoogle Scholar
  31. 31.
    Selka A, Levesque N, Foucher D, Clarisse O, Chemat F, Touaibia M (2017) A Comparative study of solvent-free and highly efficient pinene hydrogenation over Pd on carbon, alumina, and silica supports. Org Process Res Dev 21(1):60–64CrossRefGoogle Scholar
  32. 32.
    Yara-Varon E, Selka A, Fabiano-Tixier AS, Canela-Garayoa R, Balcells M, Bily A, Touaibia M, Chemat F (2016) Solvent from forestry biomass. Pinane a stable terpene derived from pine trees by product to substitute n-hexane for the extraction of bioactive compounds. Green Chem 18:6596–6608CrossRefGoogle Scholar
  33. 33.
    Liu Y, Li L, Liu S, Xie C, Yu S (2016) Magnetically recyclable Ru immobilized on amine-functionalized magnetite nanoparticles and its high selectivity to prepare cis-pinane. J Mol Cat A Chem 424:269–275CrossRefGoogle Scholar
  34. 34.
    Hou S, Xie C, Zhong H, Yu S (2015) Mild water-promoted ruthenium nanoparticles as an efficient catalyst for the preparation of cis-rich pinane. RSC Adv 5:89552–89558CrossRefGoogle Scholar
  35. 35.
    Chemat F, Vian MA (eds) (2014) Alternative solvents for natural products extraction. Springer, Berlin Heidelberg, Berlin, HeidelbergGoogle Scholar
  36. 36.
    Ernenwein C, Fréville V, Pezron I (2011) Les agrosolvants en extraction. In Chemat F (ed) Book chapter, Eco-Extraction du végétal. Procédés innovants et solvants alternatifs. Dunod, ParisGoogle Scholar
  37. 37.
    Roire J (1989) Les solvants. EREC, PuteauxGoogle Scholar
  38. 38.
    Hildebrand J, Scott RL (1950) The solubility of nonelectrolytes. Reinhold, New YorkGoogle Scholar
  39. 39.
    Hansen CM (2007) Hansen solubility parameters: a user’s handbook, 2nd edn. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  40. 40.
    Lang YH, Cao ZM, Jiang X (2005) Prediction of solvents extraction-the organochlorine pesticides in soil using solubility parameters. Talanta 66:249–252CrossRefGoogle Scholar
  41. 41.
    Srinivas K, King JW, Monrad JK, Howard LR, Hansen CM (2009) Optimization of subcritical fluid extraction of bioactive compounds using Hansen solubility parameters. J Food Sci 74:342–354CrossRefGoogle Scholar
  42. 42.
    Filly A, Fabiano-Tixier A-S, Lemasson Y, Roy C, Fernandez X, Chemat F (2014) Extraction of aroma compounds in blackcurrant buds by alternative solvents: theoretical and experimental study. C R Chimie 17:1268–1275Google Scholar
  43. 43.
    Li Y, Fine F, Fabiano-Tixier A-S, Abert-Vian M, Carre P, Pages X, Chemat F (2014) Evaluation of alternative solvents for improvement of oil extraction from rapeseeds. C R Chimie 17:242–251CrossRefGoogle Scholar
  44. 44.
    Breil C, Meullemiestre A, Vian M, Chemat F (2016) Bio-based solvents for green extraction of lipids from oleaginous yeast biomass for sustainable aviation biofuel. Molecules 21:196CrossRefGoogle Scholar
  45. 45.
    Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perk T2:799–805CrossRefGoogle Scholar
  46. 46.
    Klamt A (1995) Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem 99:2224–2235CrossRefGoogle Scholar
  47. 47.
    Sicaire A-G, Filly A, Abert Vian M, Fabiano-Tixier AS, Chemat F (2016) COSMO-RS assisted solvent screening for green extraction of natural products. In: Handbook of Green Chemistry. WileyGoogle Scholar
  48. 48.
    Pozarska A, da Costa Mathews C, Wong M, Pencheva K (2013) Application of COSMO-RS as an excipient ranking tool in early formulation development. Eur J Pharm Sci 49:505–511CrossRefGoogle Scholar
  49. 49.
    Garcia-Chavez LY, Hermans AJ, Schuur B, de Haan AB (2012) COSMO-RS assisted solvent screening for liquid–liquid extraction of mono ethylene glycol from aqueous streams. Sep Purif Technol 97:2–10CrossRefGoogle Scholar
  50. 50.
    Benazzouz A, Moity L, Pierlot C et al (2014) Hansen approach versus COSMO-RS for predicting the solubility of an organic UV filter in cosmetic solvents. Colloids Surf Physicochem Eng Asp 458:101–109CrossRefGoogle Scholar
  51. 51.
    Moity L, Durand M, Benazzouz A et al (2012) Panorama of sustainable solvents using the COSMO-RS approach. Green Chem 14:1132CrossRefGoogle Scholar
  52. 52.
    Filly A, Fabiano-Tixier A-S, Fernandez X, Chemat F (2015) Alternative solvents for extraction of food aromas: experimental and COSMO-RS study. LWT-Food Sci Technol 61:33–40CrossRefGoogle Scholar
  53. 53.
    Sicaire A-G, Vian MA, Fine F, Carre P, Tostain S, Chemat F (2015) Experimental approach versus COSMO-RS assisted solvent screening for predicting the solubility of rapeseed oil. Oil seeds Fats Crops Lipids 22(4):D404Google Scholar
  54. 54.
    Tixier A-S, Chemat F (2017) A green analytical chemistry approach for lipid extraction: computation methods in the selection of green solvents as alternative to hexane. Anal Bioanal Chem 409:3527–3539CrossRefGoogle Scholar
  55. 55.
    Toplisek T, Gustafson R (1995) Cleaning with D-limonenes: a substitute for chlorinated solvents. Precis Clean 3:17–20Google Scholar
  56. 56.
    Mamidipally PK, Liu SX (2004) First approach on rice bran oil extraction using limonene. Eur J Lipid Sci Tech 106:122–125CrossRefGoogle Scholar
  57. 57.
    Liu SX, Mamidipally PK (2005) Quality comparison of rice bran oil extracted with d-limonene and hexane. Cereal Chem 82:209–215CrossRefGoogle Scholar
  58. 58.
    Virot M, Tomao V, Ginies C, Visinoni F, Chemat F (2008) Green procedure with a green solvent for fats and oils’ determination Microwave—integrated Soxhlet using limonene followed by microwave clevenger distillation. J Chromatogr A 1196–1197:147–152CrossRefGoogle Scholar
  59. 59.
    Virot M, Tomao V, Ginies C, Chemat F (2008) Total lipid extraction of food using d-limonene as an alternative to n-hexane. Chromatographia 68:311–313CrossRefGoogle Scholar
  60. 60.
    Veillet S, Tomao V, Ruiz K, Chemat F (2010) Green procedure using limonene in the Dean-Stark apparatus for moisture determination in food products. Anal Chim Acta 674:49–52CrossRefGoogle Scholar
  61. 61.
    Chemat-Djenni Z, Ferhat MA, Tomao V, Chemat F (2010) Carotenoid extraction from tomato using a green solvent resulting from orange processing waste. J Essent Oil Bearing Plants 13:139–147CrossRefGoogle Scholar
  62. 62.
    Boukroufa M, Boutekedjiret C, Chemat F (2017) Development of a green procedure of citrus fruits waste processing to recover carotenoids. Res-Efficient Technol 3:252–262CrossRefGoogle Scholar
  63. 63.
    Bertouche S, Tomao V, Hellal A, Boutekedjiret C, Chemat F (2013) First approach on edible oil determination in oilseeds products using α-pinene. J Essent Oil research 25(6):439–443CrossRefGoogle Scholar
  64. 64.
    Dejoye Tanzi C, Abert Vian M, Ginies C, El maataoui M, Chemat F (2012) Terpenes as green solvents for extraction of oil from microalgae. Molecules 17:8196–8205CrossRefGoogle Scholar
  65. 65.
    Petkov G, Garcia G (2007) Which are fatty acids of the green alga Chlorella. Biochem Syst Ecol 35:281–285CrossRefGoogle Scholar
  66. 66.
    Plaza M, Santoyo S, Jaime L, Avalo B, Cifuentes A, Reglero G, García-Blairsy G, Señoráns FJ, Ibáñez E (2011) Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgaris. LWT Food Sci Technol 46:245–253CrossRefGoogle Scholar
  67. 67.
    AOCS Official Method Ja 2a-46 (1993) American Oil Chemist’ Society, ChampaignGoogle Scholar
  68. 68.
    Bertouche S, Tomao V, Ruiz K, Hellal A, Boutekedjiret C, Chemat F (2012) First approach on moisture determination in food products using α-pinene as an alternative solvent for dean–stark distillation. Food Chem 134:602–605CrossRefGoogle Scholar
  69. 69.
    Yatagai M, Sato T, Takahashi T (1984) Terpenes of leaf oils from Cupressaceae. Biochem Syst Ecol 13:377–385CrossRefGoogle Scholar
  70. 70.
    Dejoye Tanzi C, Abert Vian M, Chemat F (2013) New procedure for extraction of algal lipids from wet biomass: a green clean and scalable process. Biores Technol 134:271–275CrossRefGoogle Scholar
  71. 71.
    Chemat F, Rombaut N, Fabiano-Tixier AS, Birtic S, Roller M, Bily A (2017) New solvent for extraction and solubilisation, WO2017064424 (A1)Google Scholar
  72. 72.
    Ruberto G, Baratta MT (2000) Antioxidant activity of selected essential oil components in two lipid model system. Food Chem 69:167–174CrossRefGoogle Scholar
  73. 73.
    Kulisic T, Radonic A, Katalinic V, Milos M (2004) Use of different methods for testing activity of oregano essential oil. Food Chem 85:633–640CrossRefGoogle Scholar
  74. 74.
    Zaouali Y, Bouzaine T, Boussaid M (2010) Essential oils composition in two Rosmarinus officinalis L. varieties and incidence for antimicrobial and antioxidant activities. Food Chem Toxicol 48:3144–3152CrossRefGoogle Scholar
  75. 75.
    Burt S (2004) Essential oil: their antibacterial properties and potential applications in foods. A Rev Int J Food Microbiol 94:223–253CrossRefGoogle Scholar
  76. 76.
    Sacchetti G, Maietti S, Muzzoli M, Scaglianti M, Manfredini S, Radice M, Bruni R (2005) Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem 91:621–632CrossRefGoogle Scholar
  77. 77.
    Bajalan I, Rouzbahani R, Ghasemi Pirbalouti A, Maggi F (2017) Antioxidant and antibacterial activities of the essential oils obtained from seven Iranian populations of Rosmarinus officinalis. Ind Crops Prod 107:305–311CrossRefGoogle Scholar
  78. 78.
    Solorzano-Santos F, Miranda-Novales MG (2011) Essential oils from aromatic herbs as antimicrobial agents. Curr Opin Biotechnol 23:136–141CrossRefGoogle Scholar
  79. 79.
    Nevas M, Korhonen AR, Lindstrom M (2004) Antibacterial efficiency of Finnish spice essential oils against pathogenic and spoilage bacteria. J Food Protect 67:199–202CrossRefGoogle Scholar
  80. 80.
    Xie Y, Wang Z, Huang Q, Zhang D (2017) Antifungal activity of several essential oils and major components against wood-rot fungi. Ind Crops Prod 108:278–285CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Mohamed Touaibia
    • 1
    Email author
  • Chahrazed Boutekedjiret
    • 2
  • Sandrine Perino
    • 3
  • Farid Chemat
    • 3
  1. 1.Département de Chimie et BiochimieUniversité de MonctonMonctonCanada
  2. 2.Laboratoire des Sciences et Techniques de l’Environnement (LSTE)Ecole Nationale PolytechniqueAlgerAlgeria
  3. 3.Université d’Avignon et des Pays de Vaucluse, INRAAvignonFrance

Personalised recommendations