Biomass Pelletization: Contribution to Renewable Power Generation Scenarios

  • Roberto García
  • María V. Gil
  • María P. González-Vázquez
  • Fernando RubieraEmail author
  • Covadonga Pevida
Part of the Biofuels and Biorefineries book series (BIOBIO, volume 9)


This work reviews the state of the art of biomass pelletization with particular emphasis on its implementation in power generation. Biomass is a renewable feedstock with potential to supplement or partially replace fossil fuels for energy due to its neutrality with respect to CO2 emissions, the low NOx and SO2 emissions, the advantageous environmental policies that promote its use, as well as its autonomy, that may contribute to secure the energy supply. Raw (or white) biomass pellets are increasingly being used as a source of bioenergy in power plants for heat production. Torrefied (or black) pellets also have a promising future, but still need to be widely deployed. Main feedstocks and additives used in biomass pelletization research at laboratory, pilot and industrial scales are reviewed throughout the chapter. In addition, the pellet quality standards, economic costs, most meaningful markets and trade flows are also overviewed. Finally, relevant examples on the status of large scale biomass pellets firing and co-firing are reported and key conclusions from these experiences are summarized.


Biomass Torrefaction Pelletization Densification Firing Co-firing Heat Power CHP Co-generation 


  1. 1.
    Chen P-Y, Chen S-T, Hsu C-S, Chen C-C (2016) Modeling the global relationships among economic growth, energy consumption and CO2 emissions. Renew Sust Energ Rev 65:420–431. CrossRefGoogle Scholar
  2. 2.
    Van Loo S, Koppejan L (2010) The handbook of biomass combustion and co-firing. Earthscan Routledge-Taylor & Francis, OxfordGoogle Scholar
  3. 3.
    WEC (2017) World energy resources – bioenergy 2016Google Scholar
  4. 4.
    Guo M, Song W, Buhain J (2015) Bioenergy and biofuels: history, status, and perspective. Renew Sustain Energ Rev 42:712–725. CrossRefGoogle Scholar
  5. 5.
    García R, Pizarro C, Lavín AG, Bueno JL (2012) Characterization of Spanish biomass wastes for energy use. Bioresour Technol 103:249–258. CrossRefPubMedGoogle Scholar
  6. 6.
    Bourguignon D (2015) Biomass for electricity and heating. Opportunities and challenges. European Parliament Briefing PE 568.329Google Scholar
  7. 7.
    Munir S, Daood SS, Nimmo W et al (2009) Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour Technol 100:1413–1418. CrossRefPubMedGoogle Scholar
  8. 8.
    Qian FP, Chyang CS, Huang KS, Tso J (2011) Combustion and NO emission of high nitrogen content biomass in a pilot-scale vortexing fluidized bed combustor. Bioresour Technol 102:1892–1898. CrossRefPubMedGoogle Scholar
  9. 9.
    Kummamuru B (2016) WBA global bioenergy statistics 2016Google Scholar
  10. 10.
    Sebastián-Nogués F, García-Galindo D, Rezeau A (2010) Energía de la Biomasa – Volumen I. Energías R. Prensas de la Universidad de Zaragoza, ZaragozaGoogle Scholar
  11. 11.
    Demirbas A (2008) Importance of biomass energy sources for Turkey. Energy Policy 36:834–842. CrossRefGoogle Scholar
  12. 12.
    Bahng MK, Mukarakate C, Robichaud DJ, Nimlos MR (2009) Current technologies for analysis of biomass thermochemical processing: a review. Anal Chim Acta 651:117–138. CrossRefPubMedGoogle Scholar
  13. 13.
    AEBIOM (2016) AEBIOM 2016 key findingsGoogle Scholar
  14. 14.
    IEA (2017) World energy outlook 2017 – executive summaryGoogle Scholar
  15. 15.
    Bridgeman TG, Jones JM, Shield I, Williams PT (2008) Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87:844–856. CrossRefGoogle Scholar
  16. 16.
    Nunes LJR, Matias JCO, Catalão JPS (2014) A review on torrefied biomass pellets as a sustainable alternative to coal in power generation. Renew Sust Energ Rev 40:153–160. CrossRefGoogle Scholar
  17. 17.
    Fisher EM, Dupont C, Darvell LI et al (2012) Combustion and gasification characteristics of chars from raw and torrefied biomass. Bioresour Technol 119:157–165. CrossRefPubMedGoogle Scholar
  18. 18.
    Shang L, Ahrenfeldt J, Holm JK et al (2012) Changes of chemical and mechanical behavior of torrefied wheat straw. Biomass Bioenergy 40:63–70. CrossRefGoogle Scholar
  19. 19.
    Wang C, Peng J, Li H et al (2013) Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets. Bioresour Technol 127:318–325. CrossRefPubMedGoogle Scholar
  20. 20.
    Chen WH, Peng J, Bi XT (2015) A state-of-the-art review of biomass torrefaction, densification and applications. Renew Sust Energ Rev 44:847–866. CrossRefGoogle Scholar
  21. 21.
    Keipi T, Tolvanen H, Kokko L, Raiko R (2014) The effect of torrefaction on the chlorine content and heating value of eight woody biomass samples. Biomass Bioenergy 66:232–239. CrossRefGoogle Scholar
  22. 22.
    Hakkou M, Pétrissans M, Gérardin P, Zoulalian A (2006) Investigations of the reasons for fungal durability of heat-treated beech wood. Polym Degrad Stab 91:393–397. CrossRefGoogle Scholar
  23. 23.
    Arias B, Pevida C, Fermoso J et al (2008) Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process Technol 89:169–175. CrossRefGoogle Scholar
  24. 24.
    Gil MV, García R, Pevida C, Rubiera F (2015) Grindability and combustion behavior of coal and torrefied biomass blends. Bioresour Technol 191:205–212. CrossRefPubMedGoogle Scholar
  25. 25.
    Carone MT, Pantaleo A, Pellerano A (2011) Influence of process parameters and biomass characteristics on the durability of pellets from the pruning residues of Olea europaea L. Biomass Bioenergy 35:402–410. CrossRefGoogle Scholar
  26. 26.
    Holm JK, Stelte W, Posselt D et al (2011) Optimization of a multiparameter model for biomass pelletization to investigate temperature dependence and to facilitate fast testing of pelletization behavior. Energy Fuels 25:3706–3711. CrossRefGoogle Scholar
  27. 27.
    Yilmaz E, Wzorek M, Akçay S (2017) Co-pelletization of sewage sludge and agricultural wastes. J Environ Manag.
  28. 28.
    Gil MV, Oulego P, Casal MD et al (2010) Mechanical durability and combustion characteristics of pellets from biomass blends. Bioresour Technol 101:8859–8867. CrossRefPubMedGoogle Scholar
  29. 29.
    Rudolfsson M, Borén E, Pommer L et al (2017) Combined effects of torrefaction and pelletization parameters on the quality of pellets produced from torrefied biomass. Appl Energy 191:414–424. CrossRefGoogle Scholar
  30. 30.
    Li H, Jiang LB, Li CZ et al (2015) Co-pelletization of sewage sludge and biomass: the energy input and properties of pellets. Fuel Process Technol 132:55–61. CrossRefGoogle Scholar
  31. 31.
    Adapa PK, Schoenau GJ, Tabil LG et al (2007) Customized and value-added high quality Alfalfa products: a new concept. Agric Eng Int CIGR Ejournal IX:1–28Google Scholar
  32. 32.
    Brady S, Tam K (2009) Zero waste biodiesel: using glycerin and biomass to create renewable energy. UCR Undergrad Res J 5–11Google Scholar
  33. 33.
    Finney KN, Sharifi VN, Swithenbank J (2009) Fuel pelletization with a binder: part I – the identification of a suitable binder for spent mushroom compost – coal tailing pellets. Energy Fuels 23:3195–3202. CrossRefGoogle Scholar
  34. 34.
    Chaiyaomporn K, Chavalparit O (2010) Fuel pellets production from biodiesel waste. Environ Asia 3:103–110. CrossRefGoogle Scholar
  35. 35.
    Raslavičius L (2012) Characterization of the woody cutting waste briquettes containing absorbed glycerol. Biomass Bioenergy 45:144–151. CrossRefGoogle Scholar
  36. 36.
    Jiang L, Liang J, Yuan X et al (2014) Co-pelletization of sewage sludge and biomass: the density and hardness of pellet. Bioresour Technol 166:435–443. CrossRefPubMedGoogle Scholar
  37. 37.
    Lu D, Tabil LG, Wang D et al (2014) Experimental trials to make wheat straw pellets with wood residue and binders. Biomass Bioenergy 69:287–296. CrossRefGoogle Scholar
  38. 38.
    Sakkampang C, Wongwuttanasatian T (2014) Study of ratio of energy consumption and gained energy during briquetting process for glycerin-biomass briquette fuel. Fuel 115:186–189. CrossRefGoogle Scholar
  39. 39.
    Emami S, Tabil LG, Adapa P (2015) Effect of glycerol on densification of agricultural biomass. Int J Agric Biol Eng 8:64–73. CrossRefGoogle Scholar
  40. 40.
    Chen Y, Shen G, Su S et al (2016) Efficiencies and pollutant emissions from forced-draft biomass-pellet semi-gasifier stoves: Comparison of International and Chinese water boiling test protocols. Energy Sustain Dev 32:22–30. CrossRefGoogle Scholar
  41. 41.
    Puig-Arnavat M, Shang L, Sárossy Z et al (2016) From a single pellet press to a bench scale pellet mill – pelletizing six different biomass feedstocks. Fuel Process Technol 142:27–33. CrossRefGoogle Scholar
  42. 42.
    Brand MA, Jacinto RC, Antunes R, da Cunha AB (2017) Production of briquettes as a tool to optimize the use of waste from rice cultivation and industrial processing. Renew Energy 111:116–123. CrossRefGoogle Scholar
  43. 43.
    Huang Y, Finell M, Larsson S et al (2017) Biofuel pellets made at low moisture content – influence of water in the binding mechanism of densified biomass. Biomass Bioenergy 98:8–14. CrossRefGoogle Scholar
  44. 44.
    Piboon P, Tippayawong N, Wongsiriamnuay T (2017) Densification of corncobs using algae as a binder. Chiang Mai Univ J Nat Sci 16:175–182. CrossRefGoogle Scholar
  45. 45.
    Soleimani M, Tabil XL, Grewal R, Tabil LG (2017) Carbohydrates as binders in biomass densification for biochemical and thermochemical processes. Fuel 193:134–141. CrossRefGoogle Scholar
  46. 46.
    Kang K, Qiu L, Zhu M et al (2018) Codensification of agroforestry residue with bio-oil for improved fuel pellets. Energy Fuels 32:598–606. CrossRefGoogle Scholar
  47. 47.
    Tabil LG, Sokhansanj S, Tyler RT (1997) Performance of different binders during alfalfa pelleting. Can Agric Eng 39:17–23Google Scholar
  48. 48.
    Crawford NC, Ray AE, Yancey NA, Nagle N (2015) Evaluating the pelletization of “pure” and blended lignocellulosic biomass feedstocks. Fuel Process Technol 140:46–56. CrossRefGoogle Scholar
  49. 49.
    Barbanera M, Lascaro E, Stanzione V et al (2016) Characterization of pellets from mixing olive pomace and olive tree pruning. Renew Energy 88:185–191. CrossRefGoogle Scholar
  50. 50.
    Jackson J, Turner A, Mark T, Montross M (2016) Densification of biomass using a pilot scale flat ring roller pellet mill. Fuel Process Technol 148:43–49. CrossRefGoogle Scholar
  51. 51.
    Bartocci P, Bidini G, Asdrubali F et al (2017) Batch pyrolysis of pellet made of biomass and crude glycerol: mass and energy balances. Renew Energy.
  52. 52.
    Ciolkosz D, Jacobson M, Heil N, Brandau W (2017) An assessment of farm scale biomass pelleting in the Northeast. Renew Energy 108:85–91. CrossRefGoogle Scholar
  53. 53.
    Fernández-Puratich H, Hernández D, Lerma Arce V (2017) Characterization and cost savings of pellets fabricated from Zea mays waste from corn mills combined with Pinus radiata. Renew Energy 114:448–454. CrossRefGoogle Scholar
  54. 54.
    Karamchandani A, Yi H, Puri VM (2017) Comparison of mechanical properties of ground corn stover, switchgrass, and willow and their pellet qualities. Part Sci Technol 0:1–10. CrossRefGoogle Scholar
  55. 55.
    Pergola M, Gialdini A, Celano G et al (2017) An environmental and economic analysis of the wood-pellet chain: two case studies in Southern Italy. Int J Life Cycle Assess.
  56. 56.
    Wöhler M, Jaeger D, Reichert G et al (2017) Influence of pellet length on performance of pellet room heaters under real life operation conditions. Renew Energy 105:66–75. CrossRefGoogle Scholar
  57. 57.
    Pradhan P, Arora A, Mahajani SM (2018) Pilot scale evaluation of fuel pellets production from garden waste biomass. Energy Sustain Dev 43:1–14. CrossRefGoogle Scholar
  58. 58.
    Pizzi A, Pedretti EF, Duca D et al (2018) Emissions of heating appliances fuelled with agropellet produced from vine pruning residues and environmental aspects. Renew Energy 121:513–520. CrossRefGoogle Scholar
  59. 59.
    Gilbert P, Ryu C, Sharifi V, Swithenbank J (2009) Effect of process parameters on pelletisation of herbaceous crops. Fuel 88:1491–1497. CrossRefGoogle Scholar
  60. 60.
    Stelte W, Clemons C, Holm JK et al (2011) Pelletizing properties of torrefied spruce. Biomass Bioenergy 35:4690–4698. CrossRefGoogle Scholar
  61. 61.
    Li H, Liu X, Legros R et al (2012) Pelletization of torrefied sawdust and properties of torrefied pellets. Appl Energy 93:680–685. CrossRefGoogle Scholar
  62. 62.
    Stelte W, Nielsen NPK, Hansen HO et al (2013) Reprint of: pelletizing properties of torrefied wheat straw. Biomass Bioenergy 53:105–112. CrossRefGoogle Scholar
  63. 63.
    Bazargan A, Rough SL, McKay G (2014) Compaction of palm kernel shell biochars for application as solid fuel. Biomass Bioenergy 70:489–497. CrossRefGoogle Scholar
  64. 64.
    Misljenovic N, Bach QV, Tran KQ et al (2014) Torrefaction influence on pelletability and pellet quality of norwegian forest residues. Energy Fuels 28:2554–2561. CrossRefGoogle Scholar
  65. 65.
    Peng J, Bi XT, Lim CJ et al (2014) Sawdust as an effective binder for making torrefied pellets. Appl Energy 157:491–498. CrossRefGoogle Scholar
  66. 66.
    Reza MT, Uddin MH, Lynam JG, Coronella CJ (2014) Engineered pellets from dry torrefied and HTC biochar blends. Biomass Bioenergy 63:229–238. CrossRefGoogle Scholar
  67. 67.
    Shang L, Nielsen NPK, Stelte W et al (2014) Lab and bench-scale pelletization of torrefied wood chips-process optimization and pellet quality. Bioenergy Res 7:87–94. CrossRefGoogle Scholar
  68. 68.
    Cao L, Yuan X, Li H et al (2015) Complementary effects of torrefaction and co-pelletization: energy consumption and characteristics of pellets. Bioresour Technol 185:254–262. CrossRefPubMedGoogle Scholar
  69. 69.
    Hu Q, Shao J, Yang H et al (2015) Effects of binders on the properties of bio-char pellets. Appl Energy 157:508–516. CrossRefGoogle Scholar
  70. 70.
    Rudolfsson M, Stelte W, Lestander TA (2015) Process optimization of combined biomass torrefaction and pelletization for fuel pellet production – a parametric study. Appl Energy 140:378–384. CrossRefGoogle Scholar
  71. 71.
    Abedi A, Dalai AK (2017) Study on the quality of oat hull fuel pellets using bio-additives. Biomass Bioenergy 106:166–175. CrossRefGoogle Scholar
  72. 72.
    Puig-Arnavat M, Ahrenfeldt J, Henriksen UB (2017) Validation of a multiparameter model to investigate torrefied biomass pelletization behavior. Energy Fuels 31:1644–1649. CrossRefGoogle Scholar
  73. 73.
    Wang T, Zhai Y, Zhu Y et al (2017) Acetic acid and sodium hydroxide-aided hydrothermal carbonization of woody biomass for enhanced pelletization and fuel properties. Energy Fuel 31:12200–12208. CrossRefGoogle Scholar
  74. 74.
    Zhang Q, Zhang P, Pei Z, Wang D (2017) Investigation on characteristics of corn stover and sorghum stalk processed by ultrasonic vibration-assisted pelleting. Renew Energy 101:1075–1086. CrossRefGoogle Scholar
  75. 75.
    Mohd Faizal H, Shamsuddin HS, Heiree M et al (2018) Torrefaction of densified mesocarp fibre and palm kernel shell. Renew Energy 122:419–428. CrossRefGoogle Scholar
  76. 76.
    García R, González-Vázquez MP, Pevida C, Rubiera F (2018) Pelletization properties of raw and torrefied pine sawdust: effect of co-pelletization, temperature, moisture content and glycerol addition. Fuel 215:290–297. CrossRefGoogle Scholar
  77. 77.
    Pirraglia A, Gonzalez R, Saloni D et al (2012) Fuel properties and suitability of Eucalyptus benthamii and Eucalyptus macarthurii for torrefied wood and pellets. BioResources 7:217–235. CrossRefGoogle Scholar
  78. 78.
    Larsson SH, Rudolfsson M, Nordwaeger M et al (2013) Effects of moisture content, torrefaction temperature, and die temperature in pilot scale pelletizing of torrefied Norway spruce. Appl Energy 102:827–832. CrossRefGoogle Scholar
  79. 79.
    Arshanitsa A, Akishin Y, Zile E et al (2016) Microwave treatment combined with conventional heating of plant biomass pellets in a rotated reactor as a high rate process for solid biofuel manufacture. Renew Energy 91:386–396. CrossRefGoogle Scholar
  80. 80.
    Arteaga-Pérez LE, Grandón H, Flores M et al (2017) Steam torrefaction of Eucalyptus globulus for producing black pellets: a pilot-scale experience. Bioresour Technol 238:194–204. CrossRefPubMedGoogle Scholar
  81. 81.
    Bartocci P, Kempegowda RS, Liberti F, et al (2017) Biocarbon in small scale ellet boilers, technological and economic feasibility. In: 25th European biomass conference and exhibition. pp 1158–1164Google Scholar
  82. 82.
    Pinto F, Gominho J, André RN et al (2017) Improvement of gasification performance of Eucalyptus globulus stumps with torrefaction and densification pre-treatments. Fuel 206:289–299. CrossRefGoogle Scholar
  83. 83.
    Rudolfsson M, Larsson SH, Lestander TA (2017) New tool for improved control of sub-process interactions in rotating ring die pelletizing of torrefied biomass. Appl Energy 190:835–840. CrossRefGoogle Scholar
  84. 84.
    Thrän D, Peetz D, Schaubach K (2017) Global wood pellet industry and trade study 2017. IEA Bioenergy Task 40Google Scholar
  85. 85.
    EPC-European Pellet Council (2015) EN-plus handbook part 3: pellets quality requirementsGoogle Scholar
  86. 86.
    Verhoest C, Ryckmans Y (2012) Industrial wood pellets reportGoogle Scholar
  87. 87.
    AVEBIOM (2017) Biomass price index.
  88. 88.
    AEBIOM (2017) A focus on the pellet marketGoogle Scholar
  89. 89.
    Agar D, Gil J, Sanchez D et al (2015) Torrefied versus conventional pellet production – a comparative study on energy and emission balance based on pilot-plant data and EU sustainability criteria. Appl Energy 138:621–630. CrossRefGoogle Scholar
  90. 90.
    Agar DA (2017) A comparative economic analysis of torrefied pellet production based on state-of-the-art pellets. Biomass Bioenergy 97:155–161. CrossRefGoogle Scholar
  91. 91.
    Proskurina S, Heinimö J, Schipfer F, Vakkilainen E (2017) Biomass for industrial applications: the role of torrefaction. Renew Energy 111:265–274. CrossRefGoogle Scholar
  92. 92.
    Livingston WR (2016) IEA Bioenergy Task 32 – the status of large scale biomass firingGoogle Scholar
  93. 93.
    García R, Pizarro C, Álvarez A et al (2015) Study of biomass combustion wastes. Fuel 148:152–159. CrossRefGoogle Scholar
  94. 94.
    García R, Pizarro C, Lavín AG, Bueno JL (2017) Biomass sources for thermal conversion. Techno-economical overview. Fuel 195:182–189. CrossRefGoogle Scholar
  95. 95.
    Roni MS, Chowdhury S, Mamun S et al (2017) Biomass co-firing technology with policies, challenges, and opportunities: a global review. Renew Sustain Energ Rev 78:1089–1101. CrossRefGoogle Scholar
  96. 96.
    Nowling U (2018) Successfull torrefied biomass test burn at a coal power plant. Power Mag 2018:46–52Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Roberto García
    • 1
  • María V. Gil
    • 1
  • María P. González-Vázquez
    • 1
  • Fernando Rubiera
    • 1
    Email author
  • Covadonga Pevida
    • 1
  1. 1.Instituto Nacional del Carbón, INCAR-CSICOviedoSpain

Personalised recommendations