Advertisement

Development of Lignin-Based Antioxidants for Polymers

  • Afsana S. Kabir
  • Zhong-Shun Yuan
  • Takashi Kuboki
  • Chunbao (Charles) XuEmail author
Chapter
Part of the Biofuels and Biorefineries book series (BIOBIO, volume 9)

Abstract

The growing interest in lignin as a potential source for biofuels and biochemicals is driven by multiple factors: (1) relative abundance, (2) absence of competition between food and fuel, and (3) recent legislation and mandates promoting a green economy. This book chapter presents a detailed literature review on how lignin fits into the growing market for antioxidants especially fpr polyolefins, and discusses previous studies on lignin as a bio-based chemical. There is a scarcity of the literature addressing the effects of adding technical lignin and its de-polymerized products in polyolefins and their antioxidant properties. In this context, the authors explored lignin de-polymerization as a promising approach to improve the reactivity of the lignin-based antioxidants for polymers (polyethylene, PE and polypropylene, PP). A proprietary hydrolytic de-polymerization process was utilized to increase the antioxidant activity of two types of technical lignin: Kraft lignin, KL (a by-product from the pulp and paper industry) and hydrolysis lignin, HL (a by-product from the pre-treatment processes in cellulosic ethanol plants). This book chapter discusses some of the results showing how de-polymerization can improve the antioxidant activity of commercial lignins, and how the mechanical properties are affected after incorporating lignin into polymer matrixes.

Keywords

Bio based antioxidant Kraft lignin Hydrolysis lignin Depolymerization Polypropylene Polyethylene 

Notes

Acknowledgements

The authors gratefully acknowledge the funding support of Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Foundation for Innovation, and BioFuelNet Canada. We also thank Mrs. Fang Cao for her assistance in analysis of some samples.

References

  1. 1.
    Frost & Sullivan (2015) Strategic analysis of the European and North American plastics additives market. http://cds.frost.com. Accessed 12 May 2017
  2. 2.
    Sjöström E (2013) Wood chemistry: fundamentals and applications, 2nd edn. Academic, OrlandoGoogle Scholar
  3. 3.
    Perlack RD, Stokes BJ (2011) U.S. billion-ton update: biomass supply for a bioenergy and bioproducts industry. Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  4. 4.
    Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review q. Bioresour Technol 83:1–11.  https://doi.org/10.1016/S0960-8524(01)00212-7 CrossRefPubMedGoogle Scholar
  5. 5.
    Harmsen P, Huijgen W, López L, Bakker R (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Food Biobased Res 1–49Google Scholar
  6. 6.
    Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39:1266–1290.  https://doi.org/10.1016/j.progpolymsci.2013.11.004 CrossRefGoogle Scholar
  7. 7.
    Ragauskas AJ, Beckham GT, Biddy MJ et al (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843.  https://doi.org/10.1126/science.1246843 CrossRefPubMedGoogle Scholar
  8. 8.
    Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599.  https://doi.org/10.1021/cr900354u CrossRefPubMedGoogle Scholar
  9. 9.
    Yousif E, Haddad R (2013) Photodegradation and photostabilization of polymers, especially polystyrene: review. Springerplus 2:398.  https://doi.org/10.1186/2193-1801-2-398 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dow-Corning degradation of polymers in nature. http://www.dowcorning.com/content/publishedlit/01-1112-01.pdf. Accessed 12 June 2017
  11. 11.
    Bamford CH, Tipper CFH (1975) Degradation of polymers. Elsevier Scientific Pub. Co., AmsterdamGoogle Scholar
  12. 12.
    Beyler CL, Hirschler MM (2001) Thermal decomposition of polymers. SPE Handb Fire Prot Eng 110–131. doi: https://doi.org/10.1021/cm200949v
  13. 13.
    Pasquini N, Addeo A (2005) Polypropylene handbook. Hanser, MunichGoogle Scholar
  14. 14.
    Mendes AA, Cunha AM, Bernardo CA (2011) Study of the degradation mechanisms of polyethylene during reprocessing. Polym Degrad Stab 96:1125–1133.  https://doi.org/10.1016/j.polymdegradstab.2011.02.015 CrossRefGoogle Scholar
  15. 15.
    Peterson JD, Vyazovkin S, Wight CA (2001) Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys 202:775–784.  https://doi.org/10.1002/1521-3935(20010301)202:6<775::AID-MACP775>3.0.CO;2-G CrossRefGoogle Scholar
  16. 16.
    Baum B (1974) The weathering degradation of polyolefins. Polym Eng Sci 14:206–211.  https://doi.org/10.1002/pen.760140309 CrossRefGoogle Scholar
  17. 17.
    Jacoby P (1975) The effect of hindered phenol stabilizers on Oxygen Induction Time (OIT ) measurements , and the use of OIT measurements to predict long term thermal stability. – Philip Jacoby, Vice President of Technology, vol 1230. Mayzo, Norcross, pp 268–271Google Scholar
  18. 18.
    Tolinski M (2015) Additives for polyolefins: getting the most out of polypropylene, polyethylene and TPO. William Andrew Applied Science Publishers. https://www.elsevier.com/books/additives-for-polyolefins/tolinski/978-0-323-35884-2Google Scholar
  19. 19.
    Preedy VR, Watson RR (2007) The encyclopedia of vitamin E. CABI, OxfordCrossRefGoogle Scholar
  20. 20.
    Vulic I, Vitarelli G, Zenner JM (2002) Structure-property relationships: phenolic antioxidants with high efficiency and low colour contribution. Polym Degrad Stab 78:27–34.  https://doi.org/10.1016/S0141-3910(02)00115-5 CrossRefGoogle Scholar
  21. 21.
    Tocháček J (2004) Effect of secondary structure on physical behaviour and performance of hindered phenolic antioxidants in polypropylene. Polym Degrad Stab 86:385–389.  https://doi.org/10.1016/j.polymdegradstab.2004.05.010 CrossRefGoogle Scholar
  22. 22.
    Pokorný J (1991) Natural antioxidants for food use. Trends Food Sci Technol 2:223–227.  https://doi.org/10.1016/0924-2244(91)90695-F CrossRefGoogle Scholar
  23. 23.
    Brewer MS (2011) Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci Food Saf 10:221–247.  https://doi.org/10.1111/j.1541-4337.2011.00156.x CrossRefGoogle Scholar
  24. 24.
    García A, Toledano A, Andrés MÁ, Labidi J (2010) Study of the antioxidant capacity of Miscanthus sinensis lignins. Process Biochem 45:935–940.  https://doi.org/10.1016/j.procbio.2010.02.015 CrossRefGoogle Scholar
  25. 25.
    García A, González Alriols M, Spigno G, Labidi J (2012) Lignin as natural radical scavenger. Effect of the obtaining and purification processes on the antioxidant behaviour of lignin. Biochem Eng J 67:173–185.  https://doi.org/10.1016/j.bej.2012.06.013 CrossRefGoogle Scholar
  26. 26.
    Addler JACKNS (2006) Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J Agric Food Chem 54:5806–5813CrossRefGoogle Scholar
  27. 27.
    Pouteau C, Dole P, Cathala B et al (2003) Antioxidant properties of lignin in polypropylene. Polym Degrad Stab 81:9–18.  https://doi.org/10.1016/S0141-3910(03)00057-0 CrossRefGoogle Scholar
  28. 28.
    Canetti M, Bertini F, De Chirico A, Audisio G (2006) Thermal degradation behaviour of isotactic polypropylene blended with lignin. Polym Degrad Stab 91:494–498.  https://doi.org/10.1016/j.polymdegradstab.2005.01.052 CrossRefGoogle Scholar
  29. 29.
    Alexy P, Košíková B, Podstránska G (2000) The effect of blending lignin with polyethylene and polypropylene on physical properties. Polymer (Guildf) 41:4901–4908.  https://doi.org/10.1016/S0032-3861(99)00714-4 CrossRefGoogle Scholar
  30. 30.
    Xu C, Arneil R, Arancon D et al (2014) Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem Soc Rev Chem Soc Rev 43:7485–7500.  https://doi.org/10.1039/c4cs00235k CrossRefPubMedGoogle Scholar
  31. 31.
    Mahmood N, Yuan Z, Schmidt J, Xu C(C) (2016) Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: a review. Renew Sust Energ Rev 60:317–329.  https://doi.org/10.1016/j.rser.2016.01.037 CrossRefGoogle Scholar
  32. 32.
    U.S. Congress, Office of Technology Assessment (1989) Technologies for Reducing Dioxin in the Manufacture of Bleached Wood Pulp, OTA-BP-O-54, Washington, DC.Google Scholar
  33. 33.
    Kouisni L, Gagne A, Maki K et al (2016) LignoForce system for the recovery of lignin from black liquor: feedstock options, odor profile, and product characterization. ACS Sustain Chem Eng 4:5152–5159.  https://doi.org/10.1021/acssuschemeng.6b00907 CrossRefGoogle Scholar
  34. 34.
    Stewart D (2008) Lignin as a base material for materials applications: chemistry, application and economics. Ind Crop Prod 27:202–207.  https://doi.org/10.1016/j.indcrop.2007.07.008 CrossRefGoogle Scholar
  35. 35.
    Dessbesell L, Xu CC, Pulkki R et al (2017) Forest biomass supply chain optimization for a biorefinery aiming to produce high-value bio-based materials and chemicals from lignin and forestry residues: a review of literature. Can J For Res 47:277–288CrossRefGoogle Scholar
  36. 36.
    Isikgor FH, Remzi Becer C (2015) Lignocellulosic biomass: a sustainable platform for production of bio-based chemicals and polymers. Polym Chem 6:4497–4559.  https://doi.org/10.1039/c3py00085k CrossRefGoogle Scholar
  37. 37.
    Masek A (2015) Flavonoids as natural stabilizers and color indicators of ageing for polymeric materials. Polymers (Basel) 7:1125–1144.  https://doi.org/10.3390/polym7061125 CrossRefGoogle Scholar
  38. 38.
    Cerruti P, Malinconico M, Rychly J et al (2009) Effect of natural antioxidants on the stability of polypropylene films. Polym Degrad Stab 94:2095–2100.  https://doi.org/10.1016/j.polymdegradstab.2009.07.023 CrossRefGoogle Scholar
  39. 39.
    Samper MD, Fages E, Fenollar O et al (2013) The potential of flavonoids as natural antioxidants and UV light stabilizers for polypropylene. J Appl Polym Sci 129:1707–1716.  https://doi.org/10.1002/app.38871 CrossRefGoogle Scholar
  40. 40.
    Espinoza-Acosta JL, Torres-Chávez PI, Ramírez-Wong B, López-Saiz CM, Montaño-Leyva B (2016) Antioxidant, antimicrobial and antimutagenic properties of technical lignins and their applications. BioResources 11(2):5452–5481CrossRefGoogle Scholar
  41. 41.
    Dizhbite T, Telysheva G, Jurkjane V, Viesturs U (2004) Characterization of the radical scavenging activity of lignins – natural antioxidants. Bioresour Technol 95:309–317.  https://doi.org/10.1016/j.biortech.2004.02.024 CrossRefPubMedGoogle Scholar
  42. 42.
    Ponomarenko J, Dizhbite T, Lauberts M, Volperts A, Telysheva G (2015) Analytical pyrolysis – a tool for revealing of lignin structure-antioxidant activity relationship. J Anal Appl Pyrolysis 13:360–369CrossRefGoogle Scholar
  43. 43.
    Kabir AS (2017) Effects of lignin as a stabilizer or antioxidant in polyolefins. Electronic Thesis and Dissertation, University of Western Ontario. https://ir.lib.uwo.ca/etd/4796/
  44. 44.
    Garcia A, Amendola D, González M et al (2011) Lignin as natural radical scavenger. Study of the antioxidant capacity of apple tree pruning lignin obtained by different methods. Chem Eng Trans 24:925–931Google Scholar
  45. 45.
    Kaur R, Uppal SK (2015) Structural characterization and antioxidant activity of lignin from sugarcane bagasse. Colloid Polym Sci 293:2585–2592.  https://doi.org/10.1007/s00396-015-3653-1 CrossRefGoogle Scholar
  46. 46.
    Levon K, Huhtala J, Malm B, Lindberg JJ (1987) Improvement of the thermal stabilization of polyethylene with lignosulphonate. Polymer (Guildf) 28:745–750.  https://doi.org/10.1016/0032-3861(87)90223-0 CrossRefGoogle Scholar
  47. 47.
    Pucciariello R, Villani V, Bonini C et al (2004) Physical properties of straw lignin-based polymer blends. Polymer (Guildf) 45:4159–4169.  https://doi.org/10.1016/j.polymer.2004.03.098 CrossRefGoogle Scholar
  48. 48.
    Gregorová A, Cibulková Z, Košíková B, Šimon P (2005) Stabilization effect of lignin in polypropylene and recycled polypropylene. Polym Degrad Stab 89:553–558.  https://doi.org/10.1016/j.polymdegradstab.2005.02.007 CrossRefGoogle Scholar
  49. 49.
    Piña I, Ysambertt F, Perez D, Lopez K (2015) Study of antioxidant effectiveness of Kraft lignin in HDPE. J Polym 2015:1–8CrossRefGoogle Scholar
  50. 50.
    Sailaja RRN (2005) Low density polyethylene and grafted lignin polyblends using epoxy-functionalized compatibilizer: mechanical and thermal properties. Polym Int 54:1589–1598.  https://doi.org/10.1002/pi.1864 CrossRefGoogle Scholar
  51. 51.
    Sailaja RRN, Deepthi MV (2010) Mechanical and thermal properties of compatibilized composites of polyethylene and esterified lignin. Mater Des 31:4369–4379.  https://doi.org/10.1016/j.matdes.2010.03.046 CrossRefGoogle Scholar
  52. 52.
    Ye D, Li S, Lu X et al (2016) Antioxidant and thermal stabilization of polypropylene by addition of butylated lignin at low loadings. ACS Sustain Chem Eng 4:5248–5257.  https://doi.org/10.1021/acssuschemeng.6b01241 CrossRefGoogle Scholar
  53. 53.
    Dehne L, Vila Babarro C, Saake B, Schwarz KU (2016) Influence of lignin source and esterification on properties of lignin-polyethylene blends. Ind Crop Prod 86:320–328.  https://doi.org/10.1016/j.indcrop.2016.04.005 CrossRefGoogle Scholar
  54. 54.
    Pandey MP, Kim CS (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol 34:29–41.  https://doi.org/10.1002/ceat.201000270 CrossRefGoogle Scholar
  55. 55.
    Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev.  https://doi.org/10.1021/cr900354u
  56. 56.
    Mahmood N (2016) Hydrolytic depolymerization of lignin for the preparation of polyols and rigid polyurethane foams. Electronic thesis and dissertation, University of Western Ontario. http://ir.lib.uwo.ca/etd/2614/
  57. 57.
    Dehne L, Vila C, Saake B, Schwarz KU (2017) Esterification of Kraft lignin as a method to improve structural and mechanical properties of lignin-polyethylene blends. J Appl Polym Sci 134:1–8.  https://doi.org/10.1002/app.44582 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Afsana S. Kabir
    • 1
  • Zhong-Shun Yuan
    • 1
  • Takashi Kuboki
    • 2
  • Chunbao (Charles) Xu
    • 1
    Email author
  1. 1.Institute for Chemicals and Fuels from Alternative ResourcesWestern UniversityLondonCanada
  2. 2.Department of Mechanical and Materials EngineeringWestern UniversityLondonCanada

Personalised recommendations