Microbial Production and Properties of LA-based Polymers and Oligomers from Renewable Feedstock

  • John Masani Nduko
  • Seiichi TaguchiEmail author
Part of the Biofuels and Biorefineries book series (BIOBIO, volume 9)


Most plastics, materials, fuels and other organic chemicals are presently derived from fossil fuel feedstocks. Due to the finite nature and foreseeable depletion potential of these raw materials, concerted efforts are being explored to find sustainable alternatives to the fossil fuel feedstock-derived products. Among these, bioplastics and oligomers derived from fermentation of the renewable plant biomass are promising candidates to replace fossil-fuel-derived plastics. Bioplastics are a class of storage polymers synthesized by microorganisms. Natural plastics can also be produced via a bio-chemo process that combines fermentative production of monomers or oligomers, followed by a chemical synthesis process to produce a variety of polymers. These polymers, particularly polyhydroxyalkanoates (PHAs ) represent futuristic biomaterials owing to their biodegradability and biocompatibility. Furthermore, PHAs have physicochemical properties that are similar to petrochemical-based plastics hence their potential replacement. Designing efficient processes holds the key towards their adoption. This chapter discusses opportunities and challenges regarding the production of lactic acid (LA)-based polymers and related oligomers that can act as precursors for catalytic synthesis of polylactic acid (PLA ). It covers crucial steps of their production using genetically modified organisms and engineered enzymes as well as providing future developments.


Lactate polymerizing enzyme Biodegradable polyesters Oligomers Polyhydroxyalkanoates Bioplastics 


  1. 1.
    Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed Engl 54(11):3210–3215PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Law KL (2017) Plastics in the marine environment. Annu Rev Mar Sci 9:205–229CrossRefGoogle Scholar
  3. 3.
    Thompson RC, Moore CJ, vom Saal FS, Swan SH (2009) Plastics, the environment and human health: current consensus and future trends. Phil Trans R Soc B 364:2153–2166PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Andrady AL, Neal MA (2009) Applications and societal benefits of plastics. Phil Trans R Soc B 364:1977–1984PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Plastics Europe (2016) Plastics Europe plastics–the facts 2016. Plastics Europe, Brussels, pp 1–38Google Scholar
  6. 6.
    Geyer R, Jambeck JR, Law KL (2017) Production, use and fate of all plastics ever made. Sci Adv 3(7):e1700782PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Halden RU (2010) Plastics and health risks. Annu Rev Public Health 31:179–194PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Raza ZA, Riaz S, Banat IM (2018) Polyhydroxyalkanoates: properties and chemical modification approaches for their functionalization. Biotechnol Prog 34(1):29–41PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Takasuga T, Umetsu N, Makino T, Tsubota K, Sajwan KS, Kumar KS (2007) Role of temperature and hydrochloric acid on the formation of chlorinated hydrocarbons and polycyclic aromatic hydrocarbons during combustion of paraffin powder, polymers, and newspaper. Arch Environ Contam Toxicol 53:8–21PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond Ser B 364:1985–1998CrossRefGoogle Scholar
  11. 11.
    Mecking S (2004) Nature or petrochemistry?-biologically degradable materials. Angew Chem Int Ed Engl 43:1078–1085PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Nduko JM, Matsumoto K, Taguchi S (2012) Biological lactate-polymers synthesized by one-pot microbial factory: enzyme and metabolic engineering. In: Smith PB, Gross RA (eds) Biobased monomers, polymers, and materials, vol 1105. American Chemical Society, New York, pp 213–235CrossRefGoogle Scholar
  13. 13.
    Taguchi S (2010) Current advances in microbial cell factories for lactate-polymerizing enzymes: toward further creation of new LA-based polyesters. Polym Degrad Stab 95:1421–1428CrossRefGoogle Scholar
  14. 14.
    Reddy C, Ghai R, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kourmentza C, Kornaros M (2016) Biotransformation of volatile fatty acids to polyhydroxyalkanoates by employing mixed microbial consortia: the effect of pH and carbon source. Bioresour Technol 222:388–398PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, Reis MAM (2017) Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4(2). pii: 55Google Scholar
  17. 17.
    Verlinden RAJ, Hill DJ, Kenward MA, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Saharan BS, Grewal A, Kumar P (2014) Biotechnological production of polyhydroxyalkanoates: a review on trends and latest developments. Chin J Biol 2014:1–18CrossRefGoogle Scholar
  19. 19.
    Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Madison LL, Huisman GW (1999) Metabolic engineering of poly(3- hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63(1):21–53PubMedPubMedCentralGoogle Scholar
  21. 21.
    Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants: a review. Biotechnol Adv 25:148–175PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Lee GN, Na J (2013) Future of microbial polyesters. Microb Cell Factories 12:54CrossRefGoogle Scholar
  23. 23.
    Hazer B, Steinbuchel A (2007) Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol 74:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol 85:732–743CrossRefGoogle Scholar
  25. 25.
    Li R, Zhang HH, Qi Q (2007) The production of polyhydroxyalkanoates in recombinant Escherichia coli. Bioresour Technol 98(12):2313–2320PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Park SJ, Kim TW, Kim MK, Lee SY, Lim SC (2012) Advanced bacterial polyhydroxyalkanoates: towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnol Adv 30:1196–1206PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Lopez NI, Pettinari MJ, Nikel PI, Mendez BS (2015) Polyhydroxyalkanoates: much more than biodegradable plastics. Adv Appl Microbiol 93:73–106PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12(23):1841–1846CrossRefGoogle Scholar
  29. 29.
    Garlotta D (2001) A literature review of poly(Lactic Acid). J Polym Environ 9(2):63–84CrossRefGoogle Scholar
  30. 30.
    Conn RE, Kolstad JJ, Borzelleca JF, Dixler DS, Filer LJ, LaDu BN, Pariza MW (1995) Safety assessment of polylactide (PLA) for use as a food contact polymer. Food Chem Toxicol 33(4):273–283PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Henton DE, Gruber P, Lunt J, Randall J (2005) Polylactic acid technology. In: Mohanty AK (ed) Natural fibers, biopolymers and biocomposites. CRC Press, Boca Raton, pp 528–569Google Scholar
  32. 32.
    Li Q-Z, Jiang X-L, Feng X-J, Wang J-M, Sun C, Zhang H-B et al (2016) Recovery processes of organic acids from fermentation broths in the biomass-based industry. J Microbiol Biotechnol 26(1):1–8PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Södergård A, Stolt M (2010) Industrial production of high molecular weight poly(lactic acid). In: Poly(lactic acid). Wiley, New York, pp 27–41CrossRefGoogle Scholar
  34. 34.
    Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Lasprilla AJ, Martinez GA, Lunelli BH, Jardini AL, Filho RM (2012) Poly-lactic acid synthesis for application in biomedical devices-a review. Biotechnol Adv 30(1):321–328PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Taguchi S, Yamada M, Matsumoto K, Tajima K, Satoh Y, Munekata M, Ohno K, Kohda K, Shimamura T, Kambe H, Obata S (2008) A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc Natl Acad Sci U S A 105:17323–17327PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Utsunomia C, Matsumoto K, Taguchi S (2017) Microbial secretion of D-lactate-based oligomers. ACS Sustain Chem Eng 5:2360–2367CrossRefGoogle Scholar
  38. 38.
    Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501CrossRefGoogle Scholar
  39. 39.
    Steinbuchel A, Lutke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16:81–96CrossRefGoogle Scholar
  40. 40.
    Tsuji H, Ikada Y (1998) Properties and morphology of poly (L-lactide). II. Hydrolysis in alkaline solution. J Appl Polym Sci 36(1):59–66CrossRefGoogle Scholar
  41. 41.
    Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356CrossRefGoogle Scholar
  42. 42.
    Farrington DW, Lunt J, Davies S, Blackburn RS (2005) Poly (lactic acid) fibers. Woodhead Publishing Series in Textiles, Cambridge, pp 191–220Google Scholar
  43. 43.
    Castro-Aguirre E, Iniguez-Franco F, Samsudin H, Fang X, Auras R (2016) Poly(lactic acid)–mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev 107:333–366PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    De Clercq R, Dusselier M, Makshina E, Sels BF (2018) Catalytic gas-phase production of lactide from renewable alkyl lactates. Angew Chem Int Ed 57:1–6CrossRefGoogle Scholar
  45. 45.
    Vink ETH, Davies S (2015) Life cycle inventory and impact assessment data for 2014 Ingeo™ polylactide production. Ind Biotechnol 11(3):167–180CrossRefGoogle Scholar
  46. 46.
    Matsumoto K, Taguchi S (2010) Enzymatic and whole-cell synthesis of lactate-containing polyesters: toward the complete biological production of polylactate. Appl Microbiol Biotechnol 85(4):921–932PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Van Wouwe P, Dusselier M, Vanleeuw E, Sels B (2016) Lactide synthesis and chirality control for polylactic acid production. ChemSusChem 9(9):907–921PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472PubMedPubMedCentralGoogle Scholar
  49. 49.
    Rehm BHA (2006) Genetics and biochemistry of polyhydroxyalkanoate granule self-assembly: the key role of polyester sythases. Biotechnol Lett 28:207–213PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Hori C, Oishi K, Matsumoto K, Taguchi S, Ooi T (2018) Site-directed saturation mutagenesis of polyhydroxylalkanoate synthase for efficient microbial production of poly[(R)-2-hydroxybutyrate]. J Biosci Bioeng. pii: S1389-1723(17)31017-4Google Scholar
  51. 51.
    Matsumoto K, Shiba T, Hiraide Y, Taguchi S (2017) Incorporation of glycolate units promotes hydrolytic degradation in flexible poly(glycolate-co-3-hydroxybutyrate) synthesized by engineered Escherichia coli. ACS Biomater Sci Eng 3(12):3058–3063CrossRefGoogle Scholar
  52. 52.
    Nduko JM, Sun J, Taguchi S (2015) Biosynthesis, properties, and biodegradation of lactate-based polymers. In: Green polymer chemistry: biobased materials and biocatalysis. American Chemical Society, Washington, DC, pp 113–131CrossRefGoogle Scholar
  53. 53.
    Menges G, Haberstroh E, Michaeli W, Schmachtenberg E (2011) Menges Werkstoffkunde Kunststoffe, 5. Auflage. C. Hanser-Verlag, MunchenCrossRefGoogle Scholar
  54. 54.
    Yamada M, Matsumoto K, Uramoto S, Motohashi R, Abe H, Taguchi S (2011) Lactate fraction dependent mechanical properties of semitransparent poly(lactate-co-3-hydroxybutyrate)s produced by control of lactyl-CoA monomer fluxes in recombinant Escherichia coli. J Biotechnol 154:255–260PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Song Y, Matsumoto K, Yamada M, Gohda A, Brigham C, Sinskey A, Taguchi S (2012) Engineered Corynebacterium glutamicum as an endotoxin-free platform strain for lactate-based polyester production. Appl Microbiol Biotechnol 93:1917–1925PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Yamada M, Matsumoto K, Shimizu K, Uramoto S, Nakai T, Shozui F, Taguchi S (2010) Adjustable mutations in lactate (LA)-polymerizing enzyme for the microbial production of LA-based polyesters with tailor-made monomer composition. Biomacromolecules 11:815–819PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Yamada M, Matsumoto K, Nakai T, Taguchi S (2009) Microbial production of lactate-enriched poly[(R)-lactate-co-(R)-3-hydroxybutyrate] with novel thermal properties. Biomacromolecules 10:677–681PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Tajima K, Satoh Y, Satoh T, Itoh R, Han XR, Taguchi S, Kakuchi T, Munekata M (2009) Chemo-enzymatic synthesis of poly(lactate-co-(3-hydroxybutyrate)) by a lactate-polymerizing enzyme. Macromolecules 42:1985–1989CrossRefGoogle Scholar
  59. 59.
    Shozui F, Matsumoto K, Motohashi R, Sun JA, Satoh T, Kakuchi T, Taguchi S (2011) Biosynthesis of a lactate (LA)-based polyester with a 96 mol% LA fraction and its application to stereocomplex formation. Polym Degrad Stab 96:499–504CrossRefGoogle Scholar
  60. 60.
    Nomura CT, Taguchi K, Gan Z, Kuwabara K, Tanaka T, Takase K et al (2005) Expression of 3-ketoacyl-acyl carrier protein reductase (fabG) genes enhances production of polyhydroxyalkanoate copolymer from glucose in recombinant Escherichia coli JM109. Appl Environ Microbiol 71:4297e306CrossRefGoogle Scholar
  61. 61.
    Taguchi K, Aoyagi Y, Matsusaki H, Fukui T, Doi Y (1999) Co-expression of 3-ketoacyl-ACP reductase and polyhydroxyalkanoate synthase genes induces PHA production in Escherichia coli HB101 strain. FEMS Microbiol Lett 176:183e90CrossRefGoogle Scholar
  62. 62.
    Nomura CT, Taguchi K, Taguchi S, Doi Y (2004) Coexpression of genetically engineered 3-ketoacyl-ACP synthase III (fabH) and polyhydroxyalkanoate synthase (phaC) genes leads to short-chain-length/medium-chain-length polyhydroxyalkanoate copolymer production from glucose in Escherichia coli JM109. Appl Environ Microbiol 70:999e1007CrossRefGoogle Scholar
  63. 63.
    Shozui F, Matsumoto K, Nakai T, Yamada M, Taguchi S (2009) Biosynthresis of novel terpolymers Poly(lactate-co-3-hydroxybutyrate-co-3-hydroxyvalerate)s in lactate overproducing mutant Escherichia coli JW0885 by feeding propionate as a precursor of 3-hydroxyvalerate. Appl Microbiol Biotechnol 85:949–954PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Furrer P, Zinn M, Panke S (2007) Efficient recovery of low endotoxin medium-chain-length poly([R]-3-hydroxyalkanoate) from bacterial biomass. J Microbiol Methods 69:206–213PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Lee SY, Choi JI, Han K, Song JY (1999) Removal of endotoxin during purification of poly(3-hydroxybutyrate) from Gram negative bacteria. Appl Environ Microbiol 65:2762–2764PubMedPubMedCentralGoogle Scholar
  66. 66.
    Valappil SP, Boccaccini AR, Bucke C, Roy I (2007) Polyhydroxyalkanoates in Gram-positive bacteria: insights from the genera Bacillus and Streptomyces. Antonie Van Leeuwenhoek 91:1–17PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Jo SJ, Maeda M, Ooi T, Taguchi S (2006) Production system for biodegradable polyester polyhydroxybutyrate by Corynebacterium glutamicum. J Biosci Bioeng 102:233–236PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Jo SJ, Matsumoto K, Leong CR, Ooi T, Taguchi S (2007) Improvement of poly(3-hydroxybutyrate) [P(3HB)] production in Corynebacterium glutamicum by codon optimization, point mutation and gene dosage of P(3HB) biosynthetic genes. J Biosci Bioeng 104:457–463PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Matsumoto K, Lijima M, Hori C, Utsunomia C, Ooi T, Taguchi S (2018) In Vitro analysis of D-Lactyl-CoA-polymerizing polyhydroxyalkanoate synthase in polylactate and Poly(lactate- co-3-hydroxybutyrate) syntheses. Biomacromolecules.
  71. 71.
    Song Y, Nduko JM, Matsumoto K, Taguchi S (2015) Microbial factory for the production of polyesters: a new platform of Cornebacterium glutamicum. In: Burkovski A (ed) Corynebacterium glutamicum: from systems biology to biotechnological applications. Caister Academic Press, Norfolk, pp 139–150CrossRefGoogle Scholar
  72. 72.
    Kadoya R, Kodama Y, Matsumoto K, Taguchi S (2015) Enhanced cellular content and lactate fraction of the poly(lactate-co-3-hydroxybutyrate) polyester produced in recombinant Escherichia coli by the deletion of σ factor RpoN. J Biosci Bioeng 119(4):427–429PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Nduko JM, Matsumoto K, Ooi T, Taguchi S (2013) Effectiveness of xylose utilization for high yield production of lactate-enriched P(lactate-co-3-hydroxybutyrate) using a lactate-overproducing strain of Escherichia coli and an evolved lactate-polymerizing enzyme. Metab Eng 15:159–166PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Nduko JM, Matsumoto K, Ooi T, Taguchi S (2014) Enhanced production of poly(lactate-co-3-hydroxybutyrate) from xylose in engineered Escherichia coli overexpressing a galactitol transporter. Appl Microbiol Biotechnol 98:2453–2460PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Kadoya R, Kodama Y, Matsumoto K, Taguchi S (2015) Indirect positive effects of a sigma factor RpoN deletion on the lactate-based polymer production in Escherichia coli. Bioengineered 6(5):307–311PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kadoya R, Matsumoto K, Ooi T, Taguchi S (2015) MtgA deletion-triggered cell enlargement of Escherichia coli for enhanced intracellular polyester accumulation. PLoS One 10(6):e0125163PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Abdel-Rahman MA, Tashiro Y, Zendo T, Hanada K, Shibata K, Sonomoto K (2011) Efficient homofermentative L-(+)-lactic acid production from xylose by a novel lactic acid bacterium, Enterococcus mundtii QU 25. Appl Environ Microbiol 77:1892–1895PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Matsumoto K, Kobayashi H, Ikeda K, Komanoya T, Fukuoka A, Taguchi S (2011) Chemo-microbial conversion of cellulose into polyhydroxybutyrate through ruthenium-catalyzed hydrolysis of cellulose into glucose. Bioresour Technol 102:3564–3567PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Yu J, Stahl H (2008) Microbial utilization and biopolyester synthesis of bagasse hydrolysates. Bioresour Technol 99:8042–8048PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513CrossRefGoogle Scholar
  81. 81.
    Aristidou A, Penttila M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187–198PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506e577CrossRefGoogle Scholar
  83. 83.
    Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    FitzPatrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101:8915–8922PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Adsul MG, Singhvi MS, Gaikaiwari SA, Gokhale DV (2011) Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass. Bioresour Technol 102:4304–4312PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Shozui F, Matsumoto K, Nakai T, Yamada M, Taguchi S (2010) Biosynthesis of novel terpolymers poly(lactate-co-3-hydroxybutyrate-co-3-hydroxyvalerate)s in lactate-overproducing mutant Escherichia coli JW0885 by feeding propionate as a precursor of 3-hydroxyvalerate. Appl Microbiol Biotechnol 85:949–954PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Zhou L, Zuo ZR, Chen XZ, Niu DD, Tian KM, Prior BA, Shen W, Shi GY, Singh S, Wang ZX (2011) Evaluation of genetic manipulation strategies on D-lactate production by Escherichia coli. Curr Microbiol 62:981–989PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Hasona A, Kim Y, Healy FG, Ingram LO, Shanmugam KT (2004) Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. J Bacteriol 186:7593–7600PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Sun J, Utsunomia C, Sasaki S, Matsumoto K, Yamada T, Ooi T, Taguchi S (2016) Microbial production of poly(lactate-co-3-hydroxybutyrate) from hybrid Miscanthus-derived sugars. Biosci Biotechnol Biochem 80(4):818–820PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Takisawa K, Ooi T, Matsumoto K, Kadoya R, Taguchi S (2017) Xylose-based hydrolysate from Eucalyptus extract as feedstock for poly(lactate-co-3-hydroxybutyrate) production in engineered Escherichia coli. Process Biochem 54:102–105CrossRefGoogle Scholar
  92. 92.
    Salamanca-Cardona L, Scheel RA, Mizuno K, Bergey NS, Stipanovic AJ, Matsumoto K, Taguchi S, Nomura CT (2017) Effect of acetate as a co-feedstock on the production of poly(lactate-co-3-hydroxyalkanoate) by pflA-deficient Escherichia coli RSC10. J Biosci Bioeng 123(5):547–554PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22(1):33–64PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Salamanca-Cardona L, Ashe CS, Stipanovic AJ, Nomura CT (2014) Enhanced production of polyhydroxyalkanoates (PHAs) from beechwood xylan by recombinant Escherichia coli. Appl Microbiol Biotechnol 98(2):831–842PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Salamanca-Cardona L, Scheel RA, Bergey NS, Stipanovic AJ, Matsumoto K, Taguchi S, Nomura CT (2016) Consolidated bioprocessing of poly(lactate-co-3-hydroxybutyrate) from xylan as a sole feedstock by genetically-engineered Escherichia coli. J Biosci Bioeng 122(4):406–414PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Huang J, Lisowski MS, Runt J, Hall ES, Kean RT, Buehler N, Lin JS (1998) Crystallization and microstructure of Poly(l-lactide-co-meso-lactide) copolymers. Macromolecules 31(8):2593–2599CrossRefGoogle Scholar
  97. 97.
    Rehm BH (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Lutz JF, Ouchi M, Liu DR, Sawamoto M (2013) Sequence-controlled polymers. Science 341:1238149PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Wolf FF, Friedemann N, Frey H (2009) Poly(lactide)-block-Poly(HEMA) block copolymers: an orthogonal one-pot combination of ROP and ATRP, using a bifunctional initiator. Macromolecules 42:5622–5628CrossRefGoogle Scholar
  100. 100.
    Matsumoto K, Hori C, Fujii R, Takaya M, Ooba T, Ooi T, Isono T, Satoh T, Taguchi S (2018) Dynamic changes of intracellular monomer levels regulate block sequence of polyhydroxyalkanoates in engineered Escherichia coli. Biomacromolecules 19(2):662–671PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Kricheldorf HR (2001) Syntheses and application of polylactides. Chemosphere 43:49–54PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Cicero JA, Dorgan JR, Janzen J, Garrett J, Runt J, Lin JS (2002) Supramolecular morphology of two-step, melt-spun poly(lactic acid) fibers. J Appl Polym Sci 86(11):2828–2838CrossRefGoogle Scholar
  103. 103.
    Espartero JL, Rashkov I, Li SM, Manolova N, Vert M (1996) NMR analysis of low molecular weight poly(lactic acid)s. Macromolecules 29(10):3535–3539CrossRefGoogle Scholar
  104. 104.
    Moon S, Taniguchi I, Miyamoto M, Kimura Y, Lee C (2001) Synthesis and properties of high-molecular-weight poly(L-lactic acid) by melt/solid polycondensation under different reaction conditions. High Perform Polym 13:190–197CrossRefGoogle Scholar
  105. 105.
    Moon SI, Lee CW, Taniguchi I, Miyamoto M, Kimura Y (2001) Melt/solid polycondensation of L-lactic acid: an alternative route to poly(L-lactic acid) with high molecular weight. Polymer 42(11):5059–5062CrossRefGoogle Scholar
  106. 106.
    Sodergard A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 27(6):1123–1163CrossRefGoogle Scholar
  107. 107.
    Engelberg I, Kohn J (1991) Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials 12(3):292–304PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Srubar WV, Wright ZC, Tsui A, Michel AT, Billington SL, Frank CW (2012) Characterizing the effects of ambient aging on the mechanical and physical properties of two commercially available bacterial thermoplastics. Polym Degrad Stab 97(10):1–8CrossRefGoogle Scholar
  109. 109.
    Cox MK (1994) Biodegradable plastics and polymers. In: Doi Y, Fukuda K (eds) Proceedings of the third international scientific workshop on biodegradable plastics and polymers. Elsevier B.V, Osaka, pp 120–134CrossRefGoogle Scholar
  110. 110.
    Kusaka S, Iwata T, Doi Y (1999) Properties and biodegradability of ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate] produced by a recombinant Escherichia coli. Int J Biol Macromol 25(1–3):87–94PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Kawai F, Nakadai K, Nishioka E, Nakajima H, Ohara H, Masaki K, Iefuji H (2011) Different enantioselectivity of two types of poly(lactic acid) depolymerases toward poly(L-lactic acid) and poly(D-lactic acid). Polym Degrad Stab 96:1342–1348CrossRefGoogle Scholar
  112. 112.
    Kobayashi T, Sugiyama A, Kawase Y, Saito T, Mergaert J, Swings J (1999) Biochemical and genetic characterization of an extracellular Poly(3-hydroxybutyrate) depolymerase from Acidovorax sp. strain TP4. J Environ Polym Degrad 7:9–18CrossRefGoogle Scholar
  113. 113.
    Jendrossek D, Knoke I, Habibian RB, Steinbüchel A, Schlegel HG (1994) Degradation of poly(3-hydroxybutyrate), PHB, by bacteria and purification of a novel PHB depolymerase from Comamonas sp. J Environ Polym Degrad 1:53–63CrossRefGoogle Scholar
  114. 114.
    Kasuya K, Doi Y, Yao T (1994) Enzymatic degradation of poly((R)-3hydroxybutyrate) by Comamonas testosteroni ATSU of soil bacterium. Polym Degrad Stab 45:379–386CrossRefGoogle Scholar
  115. 115.
    Kasuya K, Inoue Y, Tanaka T, Akehata T, Iwata T, Fukui T, Doi Y (1997) Biochemical and molecular characterization of the polyhydroxybutyrate depolymerase of Comamonas acidovorans YM1609, isolated from freshwater. Appl Environ Microbiol 63:4844–4852PubMedPubMedCentralGoogle Scholar
  116. 116.
    Sun J, Matsumoto K, Nduko JM, Ooi T, Taguchi S (2014) Enzymatic characterization of a depolymerase from the isolated bacterium Variovorax sp. C34 that degrades poly (enriched lactate-co-3-hydroxybutyrate). Polym Degrad Stab 110:44–49CrossRefGoogle Scholar
  117. 117.
    Abe H, Doi Y (1999) Structural effects on enzymatic degradabilities for poly[(R)-3-hydroxybutyric acid] and its copolymers. Int J Biol Macromol 25:185–192PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Iwata T, Shiromo M, Doi Y (2002) Surface structures of poly[(R)-3-hydroxybutyrate] and its copolymer single crystals before and after enzymatic degradation with an extracellular PHB depolymerase. Macromol Chem Phys 203:1309–1316CrossRefGoogle Scholar
  119. 119.
    Madden LA, Anderson AJ, Shah DT, Asrar J (1999) Chain termination in polyhydroxyalkanoate synthesis: involvement of exogenous hydroxy-compounds as chain transfer agents. Int J Biol Macromol 25(1):43–53PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Hiroe A, Hyakutake M, Thomson NM, Sivaniah E, Tsuge T (2013) Endogenous ethanol affects biopolyester molecular weight in recombinmnant Escherichia coli. ACS Chem Biol 8(11):2568–2576PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Shi F, Gross RA, Rutherford DR (1996) Microbial polyester synthesis: effects of poly(ethylene glycol) on product composition, repeat unit sequence, and end group structure. Macromolecules 29(1):10–17CrossRefGoogle Scholar
  122. 122.
    Ashby RD, Shi F, Gross RA (1997) Use of poly(ethylene glycol) to control the end group structure and molecular weight of poly(3-hydroxybutyrate) formed by Alcaligenes latus DSM 1122. Tetrahedron 53(45):15209–15223CrossRefGoogle Scholar
  123. 123.
    Tomizawa S, Saito Y, Hyakutake M, Nakamura Y, Abe H, Tsuge T (2010) Chain transfer reaction catalyzed by various polyhydroxyalkanoate synthases with poly(ethylene glycol) as an exogenous chain transfer agent. Appl Microbiol Biotechnol 87(4):1427–1435PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Thomson NM, Hiroe A, Tsuge T, Summers DK, Sivaniah E (2014) Efficient molecular weight control of bacterially synthesized polyesters by alcohol supplementation. J Chem Technol Biotechnol 89(7):1110–1114CrossRefGoogle Scholar
  125. 125.
    Utsunomia C, Hori C, Matsumoto K, Taguchi S (2017) Investigation of the Escherichia coli membrane transporters involved in the secretion of D-lactate-based oligomers by loss-of-function screening. J Biosci Bioeng 124(6):635–640PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Utsunomia C, Matsumoto K, Date S, Hori C, Taguchi S (2017) Microbial secretion of lactate-enriched oligomers for efficient conversion into lactide: a biological shortcut to polylactide. J Biosci Bioeng 124(2):204–208PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Dairy and Food Science and Technology, Faculty of AgricultureEgerton UniversityEgertonKenya
  2. 2.Department of Chemistry for Life Sciences and Agriculture, Faculty of Life SciencesTokyo University of AgricultureTokyoJapan
  3. 3.CREST, JSTTokyoJapan

Personalised recommendations