Advertisement

Isolation, Purification, and Potential Applications of Xylan

  • Gen-Que Fu
  • Ya-Jie Hu
  • Jing Bian
  • Ming-Fei Li
  • Feng PengEmail author
  • Run-Cang Sun
Chapter
Part of the Biofuels and Biorefineries book series (BIOBIO, volume 9)

Abstract

There is great interest in replacing fossil fuel resources with renewable raw materials. Widely distributed lignocellulosic biomass is viewed as a potential candidate to address energy and environmental demands. In this chapter, the use of the hemicellulose component of lignocellulosic biomass, xylan, is considered. Due to the presence of ester and ether lignin-carbohydrate linkages, extraction of xylan is generally restricted to cell wall matrices of wood and lignified grass. Many extraction methods of xylan have been proposed, however, the subsequent purification and analyses are needed on its fine structure. An effective way to modify xylan with advanced properties is through etherification. This chapter points out new functionalities, for example, thermoplasticity, hydrophobicity, conductivity, and stimuli-responsiveness of xylan by chemical modification and it summarize recent reports on xylan, including extraction, purification, chemical components, structural features, and functional properties. Xylan derivatives, xylan-based materials, and their potential applications are discussed and future research areas are highlighted.

Keywords

Hemicelluloses Xylan Isolation Purification Application 

Notes

Acknowledgments

This work was supported by the Fundamental Research Funds for Central Universities (JC2015-03), Beijing Municipal Natural Science Foundation (6182031), Author of National Excellent Doctoral Dissertations of China (201458), and the National Program for Support of Top-notch Young Professionals.

References

  1. 1.
    Werther J, Saenger M, Hartge E, Ogada T, Siagi Z (2000) Combustion of agricultural residues. Prog Energy Combust 26:1–27CrossRefGoogle Scholar
  2. 2.
    Elghali L, Clift R, Sinclair P, Panoutsou C, Bauen A (2007) Developing a sustainability framework for the assessment of bioenergy systems. Energy Policy 35:6075–6083CrossRefGoogle Scholar
  3. 3.
    Peng F, Peng P, Xu F, Sun R (2012) Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv 30:879–903PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Petzold-Welcke K, Schwikal K, Daus S, Heinze T (2014) Xylan derivatives and their application potential-mini-review of own results. Carbohydr Polym 100:80–88PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Stscherbina D, Philipp B (1991) New results on isolation, modification and application of xylans (literature-review). Acta Polym Sin 42:345–351CrossRefGoogle Scholar
  6. 6.
    Ebringerová A (1992) Hemicellulosen als biopolymere rohstoffe. Das Pap 46:726–732Google Scholar
  7. 7.
    Izydorczyk M, Biliaderis C (1995) Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr Polym 28:33–48CrossRefGoogle Scholar
  8. 8.
    Vinkx C, Delcour J (1996) Rye (Secale cereal L.) Arabinoxylans: a critical review. J Cereal Sci 24:1–14CrossRefGoogle Scholar
  9. 9.
    Gregory A, O'Connell A, Bolwell G (1998) Xylans. Biotechnol Genet Eng 15:439–456CrossRefGoogle Scholar
  10. 10.
    Ebringerová A, Hromádková Z (1999) Xylans of industrial and biomedical importance. Biotechnol Genet Eng 16:325–346CrossRefGoogle Scholar
  11. 11.
    Ebringerova A, Heinze T (2000) Xylan and xylan derivatives-biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21:542–556CrossRefGoogle Scholar
  12. 12.
    Brandt A, Gräsvik J, Hallett J, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583CrossRefGoogle Scholar
  13. 13.
    Zhou X, Li W, Mabon R, Broadbelt L (2017) A critical review on hemicellulose pyrolysis. Energy Technol 5:52–79CrossRefGoogle Scholar
  14. 14.
    Ebringerova A, Hromadkova Z, Heinze T (2005) Hemicellulose. Adv Polym Sci 186:1–67CrossRefGoogle Scholar
  15. 15.
    Fincher G, Stone B (1974) A water-soluble arabinogalactan-peptide from wheat endosperm. Aust J Biol Sci 27:117–132CrossRefGoogle Scholar
  16. 16.
    Ford C (1989) A feruloylated arabinoxylan liberated from cell walls of Digitaria decumbens (pangola grass) by treatment with borohydride. Carbohydr Res 190:137–144CrossRefGoogle Scholar
  17. 17.
    Ishii T (1991) Acetylation at O-2 of arabinofuranose residues in feruloylated arabinoxylan from bamboo shoot cell-walls. Phytochemistry 30:2317–2320PubMedCrossRefGoogle Scholar
  18. 18.
    Hartley R, Jones E (1976) Diferulic acid as a component of cell walls of Lolium multiflorum. Phytochemistry 15:1157–1160CrossRefGoogle Scholar
  19. 19.
    Ebringerová A (2005) Structural diversity and application potential of hemicelluloses. Macromol Symp 232:1–12CrossRefGoogle Scholar
  20. 20.
    Nilsson M, Saulnier L, Andersson R, Åman P (1996) Water unextractable polysaccharides from three milling fractions of rye grain. Carbohydr Polym 30:229–237CrossRefGoogle Scholar
  21. 21.
    Gröndahl M, Teleman A, Gatenholm P (2003) Effect of acetylation on the material properties of glucuronoxylan from aspen wood. Carbohydr Polym 52:359–366CrossRefGoogle Scholar
  22. 22.
    Hilpmann G, Becher N, Pahner FA, Kusema B, Maki-Arvela P, Lange R, Yu Murzin D, Salmi T (2016) Acid hydrolysis of xylan. Catal Today 259:376–380CrossRefGoogle Scholar
  23. 23.
    Timell T (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70CrossRefGoogle Scholar
  24. 24.
    Teleman A, Tenkanen M, Jacobs A, Dahlman O (2002) Characterization of O-acetyl-(4-O-methylglucurono) xylan isolated from birch and beech. Carbohydr Res 337:373–377PubMedCrossRefGoogle Scholar
  25. 25.
    Mais U, Sixta H (2004) Characterization of alkali-soluble hemicelluloses of hardwood dissolving pulps. Hemicelluloses Sci Technol 864:94–107CrossRefGoogle Scholar
  26. 26.
    Jedvert K, Hasani M, Theliander H, Wells T (2014) Analyses of wood components in mild steam explosion liquors from spruce. Nord Pulp Pap Res J 29:557–566CrossRefGoogle Scholar
  27. 27.
    Schooneveld-Bergmans M, Beldman G, Voragen A (1999) Structural features of (glucurono) arabinoxylans extracted from wheat bran by barium hydroxide. J Cereal Sci 29:63–75CrossRefGoogle Scholar
  28. 28.
    Shi Z, Xiao L, Deng J, Yang H, Song L, Sun R (2013) Isolation and structural exploration of hemicelluloses from the largest bamboo species: Dendrocalamus sinicus. Bioresources 8:5036–5050Google Scholar
  29. 29.
    Yamasaki T, Enomoto A, Kato A, Ishii T, Shimizu K (2011) Structural unit of xylans from sugi (Cryptomeria japonica) and hinoki (Chamaecyparis obtusa). J Wood Sci 57:76–84CrossRefGoogle Scholar
  30. 30.
    Jackson M (1977) The alkali treatment of straws. Anim Feed Sci Technol 2:105–130CrossRefGoogle Scholar
  31. 31.
    Lawther J, Sun R, Banks W (1996) Effects of extraction conditions and alkali type on yield and composition of wheat straw hemicellulose. J Appl Polym Sci 60:1827–1837CrossRefGoogle Scholar
  32. 32.
    Curling S, Fowler P, Hill C (2007) Development of a method for the production of hemicellulosic gels from Sitka spruce. Carbohydr Polym 69:673–677CrossRefGoogle Scholar
  33. 33.
    Sun R, Lawther J, Banks W (1998) Extraction and characterization of xylose-rich pectic polysaccharide from wheat straw. Int J Polym Anal Charact 4:345–356CrossRefGoogle Scholar
  34. 34.
    Xu F, Sun J, Geng Z, Liu C, Ren J, Sun R, Fowler P, Baird M (2007) Comparative study of water-soluble and alkali-soluble hemicelluloses from perennial ryegrass leaves (Lolium peree). Carbohydr Polym 67:56–65CrossRefGoogle Scholar
  35. 35.
    Gruppen H, Hamer R, Voragen A (1991) Barium hydroxide as a tool to extract pure arabinoxylans from water-insoluble cell wall material of wheat flour. J Cereal Sci 13:275–290CrossRefGoogle Scholar
  36. 36.
    Bergman M, Beldman G, Gruppen H, Voragen A (1996) Optimization of the extraction of (glucurono)-arabinoxylan from wheat bran: use of barium and calcium hydroxide solution at elevated temperature. J Cereal Sci 23:235–245CrossRefGoogle Scholar
  37. 37.
    Verbruggen M, Beldman G, Voragen A (1995) The selective extraction of glucuronoarabinoxylans from sorghum endosperm cell walls using barium and potassium hydroxide solutions. J Cereal Sci 21:271–282CrossRefGoogle Scholar
  38. 38.
    Hutterer C, Fackler K, Potthast A (2017) The fate of 4-O-methyl glucuronic acid in hardwood xylan during alkaline extraction. ACS Sustain Chem Eng 5:1818–1823CrossRefGoogle Scholar
  39. 39.
    Singh R, Banerjee J, Sasmal S, Muir J, Arora A (2018) High xylan recovery using two stage alkali pre-treatment process from high lignin biomass and its valorisation to xylooligosaccharides of low degree of polymerisation. Bioresour Technol 256:110–117PubMedCrossRefGoogle Scholar
  40. 40.
    Arumugam N, Biely P, Puchart V, Singh S, Pillai S (2018) Structure of peanut shell xylan and its conversion to oligosaccharides. Process Biochem 72:124–129CrossRefGoogle Scholar
  41. 41.
    Maurya D, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5:597–609PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199:21–33PubMedCrossRefGoogle Scholar
  43. 43.
    Woolard G, Rathbone E, Novellie L (1977) DMSO-soluble hemicelluloses from the husk of sorghum grain. Phytochemistry 16:961–963CrossRefGoogle Scholar
  44. 44.
    Assor C, Quemener B, Vigouroux J, Lahaye M (2013) Fractionation and structural characterization of LiCl-DMSO soluble hemicelluloses from tomato. Carbohydr Polym 94:46–55PubMedCrossRefGoogle Scholar
  45. 45.
    Fu G, Yue P, Hu Y, Nan L, Shi Z, Peng F (2018) Fractionation of DMSO-extracted and NaOH-extracted hemicelluloses by gradient ethanol precipitation from Neosinocalamus affinis. Int J Poly SciGoogle Scholar
  46. 46.
    Excoffier G, Toussaint B, Vignon M (1991) Saccharification of steam-exploded poplar wood. Biotechnol Bioeng 38:1308–1317PubMedCrossRefGoogle Scholar
  47. 47.
    Himmel M, Baker J, Overend R (1994) Enzymatic conversion of biomass for fuels production. Am Chem Soc, Washington, DC, pp 292–324CrossRefGoogle Scholar
  48. 48.
    Cara C, Ruiz E, Ballesteros I, Negro M, Castro E (2006) Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochem 41:423–429CrossRefGoogle Scholar
  49. 49.
    Dekker R, Karageorge H, Wallis A (1987) Pretreatment of hardwood (Eucalyptus regnans) sawdust by autohydrolysis explosion and its saccharification by trichodermal cellulases. Biocatalysis 1:47–61CrossRefGoogle Scholar
  50. 50.
    Emmel A, Mathias A, Wypych F, Ramos L (2003) Fractionation of eucalyptus grandis chips by dilute acid-catalysed steam explosion. Bioresour Technol 86:105–115PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Ramos L, Breuil C, Kushner D, Saddler J (1992) Steam pretreatment conditions for effective enzymatic hydrolysis and recovery yields of eucalyptus viminalis wood chips. Holzforschung Int J Biol Chem Phys Technol Wood 46:149–154Google Scholar
  52. 52.
    Sun X, Xu F, Sun R, Geng Z, Fowler P, Baird M (2005) Characteristics of degraded hemicellulosic polymers obtained from steam exploded wheat straw. Carbohydr Polym 60:15–26CrossRefGoogle Scholar
  53. 53.
    Tanaka M, Matsuno R, Converse A (1990) N-butylamine and acid-steam explosion pretreatments of rice straw and hardwood: effects on substrate structure and enzymatic hydrolysis. Enzym Microb Technol 12:190–195CrossRefGoogle Scholar
  54. 54.
    Teng C, Yan Q, Jiang Z, Fan G, Shi B (2010) Production of xylooligosaccharides from the steam explosion liquor of corncobs coupled with enzymatic hydrolysis using a thermostable xylanase. Bioresour Technol 101:7679–7682PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Korte H, Offermann W, Puls J (1991) Characterization and preparation of substituted xylo-oligosaccharides from steamed Birchwood. Holzforschung Int J Biol Chem Phys Technol Wood 45:419–424Google Scholar
  56. 56.
    Biermann C, Schultz T, Mcginnia G (1984) Rapid steam hydrolysis/extraction of mixed hardwoods as a biomass pretreatment. J Wood Chem Technol 4:111–128CrossRefGoogle Scholar
  57. 57.
    Aoyama M, Seki K (1994) Chemical characterization of solubilized xylan from steamed bamboo grass. Eur J Wood Wood Prod 52:388–388CrossRefGoogle Scholar
  58. 58.
    Garrote G, Dominguez H, Parajo J (1999) Hydrothermal processing of lignocellulosic materials. Eur J Wood Wood Prod 57:191–202CrossRefGoogle Scholar
  59. 59.
    Kim T, Ryu H, Oh K (2016) Low acid hydrothermal fractionation of Giant Miscanthus for production of xylose-rich hydrolysate and furfural. Bioresour Technol 218:367–372PubMedCrossRefGoogle Scholar
  60. 60.
    Chen W, Hsu M, Wu A, Hwang W (2017) Efficient extraction and recovery of xylan and lignin from rice straw using a flow-through hydrothermal system. J Taiwan Inst Chem Eng 79:103–109CrossRefGoogle Scholar
  61. 61.
    Ganzler K, Salgo A, Valko K (1986) Microwave extraction: a novel sample preparation method for chromatography. J Chromatogr A 371:299–306CrossRefGoogle Scholar
  62. 62.
    Panthapulakkal S, Kirk D, Sain M (2015) Alkaline extraction of xylan from wood using microwave and conventional heating. J Appl Polym Sci 132Google Scholar
  63. 63.
    Panthapulakkal FS (2014) Microwave assisted extraction of xylan. Doctoral thesis, Graduate Department of Chemical Engineering and Applied Chemistry, TorontoGoogle Scholar
  64. 64.
    Mason T, Paniwnyk L, Lorimer J (1996) The uses of ultrasound in food technology. Ultrason Sonochem 3:253–260CrossRefGoogle Scholar
  65. 65.
    Panchev I, Kirtchev N, Kratchanov C (1994) On the production of low esterified pectins by acid maceration of pectic raw materials with ultrasound treatment. Food Hydrocoll 8:9–17CrossRefGoogle Scholar
  66. 66.
    Sališová M, Toma Š, Mason T (1997) Comparison of conventional and ultrasonically assisted extractions of pharmaceutically active compounds from Salvia officinalis. Ultrason Sonochem 4:131–134PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Ebringerová A, Hromádková Z (2010) An overview on the application of ultrasound in extraction, separation and purification of plant polysaccharides. Open Chem 8:243–257CrossRefGoogle Scholar
  68. 68.
    Toma M, Vinatoru M, Paniwnyk L, Mason T (2001) Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrason Sonochem 8:137–142PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Vinatoru M (2001) An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason Sonochem 8:303–313PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Hespell R (1998) Extraction and characterization of hemicellulose from the corn fiber produced by corn wet-milling progresses. J Agric Food Chem 46:2615–2619CrossRefGoogle Scholar
  71. 71.
    Ebringerová A, Hromádková Z, Hribalova V, Mason T (1997) Effect of ultrasound on the immunogenic corn cob xylan. Ultrason Sonochem 4:311–315PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Coelho E, Rocha M, Saraiva J, Coimbra M (2014) Microwave superheated water and dilute alkali extraction of brewers’ spent grain arabinoxylans and arabinoxylo-oligosaccharides. Carbohydr Polym 99:415–422PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Passos C, Coimbra M (2013) Microwave superheated water extraction of polysaccharides from spent coffee grounds. Carbohydr Polym 94:626–633PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Passos C, Moreira A, Domingues M, Evtuguin D, Coimbra M (2014) Sequential microwave superheated water extraction of mannans from spent coffee grounds. Carbohydr Polym 103:333–338PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    da Silva S, Morais A, Bogel-Łukasik R (2014) The CO2-assisted autohydrolysis of wheat straw. Green Chem 16:238–246CrossRefGoogle Scholar
  76. 76.
    Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol 199:49–58PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    George A, Brandt A, Tran K, Nizan S, Zahari S, Klein-Marcuschamer D, Sun N, Sathitsuksanoh N, Shi J, Stacila V, Parthasarathi R, Singh S, Holmes B, Wwlton T, Simmons B, Hallett J (2015) Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem 17:1728–1734CrossRefGoogle Scholar
  78. 78.
    Elgharbawy A, Alam M, Moniruzzaman M, Goto M (2016) Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochem Eng J 109:252–267CrossRefGoogle Scholar
  79. 79.
    Shi R, Wang Y (2016) Dual ionic and organic nature of ionic liquids. Sci Rep 6:19644PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Hou X, Li N, Zong M (2013) Renewable bio ionic liquids-water mixtures mediated selective removal of lignin from rice straw: visualization of changes in composition and cell wall structure. Biotechnol Bioeng 110:1895–1902PubMedCrossRefGoogle Scholar
  81. 81.
    Hou X, Li N, Zong M (2013) Facile and simple pretreatment of sugar cane bagasse without size reduction using renewable ionic liquids-water mixtures. ACS Sustain Chem Eng 1:519–526CrossRefGoogle Scholar
  82. 82.
    Hou X, Liu Q, Smith T, Li N, Zong M (2013) Evaluation of toxicity and biodegradability of cholinium amino acids ionic liquids. PLoS One 8:59145CrossRefGoogle Scholar
  83. 83.
    Hou X, Smith T, Li N, Zong M (2012) Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin. Biotechnol Bioeng 109:2484–2493PubMedCrossRefGoogle Scholar
  84. 84.
    Wang Z, Gräsvik J, Jönsson L, Winestrand S (2017) Comparison of [HSO4], [Cl] and [MeCO2] as anions in pretreatment of aspen and spruce with imidazolium-based ionic liquids. BMC Biotechnol 17:82PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Payal R, Bharath R, Periyasamy G, Balasubramanian S (2012) Density functional theory investigations on the structure and dissolution mechanisms for cellobiose and xylan in an ionic liquid: Gas phase and cluster calculations. J Phys Chem B 116:833–840PubMedCrossRefGoogle Scholar
  86. 86.
    Abbott A, Boothby D, Capper G, Davies D, Rasheed R (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147PubMedCrossRefGoogle Scholar
  87. 87.
    Oliveira V, Gregory C, François J (2015) Contribution of deep eutectic solvents for biomass processing: opportunities, challenges, and limitations. ChemCatChem 7:1250–1260CrossRefGoogle Scholar
  88. 88.
    Loow Y, Wu T, Yang G, Ang L, New E, Siow L, Jahim J, Mohammad A, Teoh W (2018) Deep eutectic solvent and inorganic salt pretreatment of lignocellulosic biomass for improving xylose recovery. Bioresour Technol 249:818–825PubMedCrossRefGoogle Scholar
  89. 89.
    Sarmad S, Xie Y, Mikkola J, Ji X (2017) Screening of deep eutectic solvents (DESs) as green CO2 sorbents: from solubility to viscosity. New J Chem 41:290–301CrossRefGoogle Scholar
  90. 90.
    Morais E, Mendonca P, Jorge F, Mara G, Carmen S, Joao A, Armando J (2018) Deep eutectic solvent aqueous solutions as efficient media for the solubilization of hardwood xylans. ChemSusChem 11:753–762PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Agrawal R, Satlewal A, Gaur R, Mathur A, Kumar R, Gupta R, Tuli D (2015) Pilot scale pretreatment of wheat straw and comparative evaluation of commercial enzyme preparations for biomass saccharification and fermentation. Biochem Eng J 102:54–61CrossRefGoogle Scholar
  92. 92.
    van Osch D, Kollau L, van den Bruinhorst A, Asikainen S, Rocha M, Kroon M (2017) Ionic liquids and deep eutectic solvents for lignocellulosic biomass fractionation. PCCP 19:2636–2665PubMedCrossRefGoogle Scholar
  93. 93.
    Harper J (1989) Food extruders and their applications. Extrusion Cooking 1989:1–15Google Scholar
  94. 94.
    Lin Z, Liu L, Li R, Shi J (2013) Screw extrusion pretreatments to enhance the hydrolysis of lignocellulosic biomass. J Microb Biochem Technol 5:12Google Scholar
  95. 95.
    Marechal P, Jorda J, Pontalier P, Rigal L (2004) Twin screw extrusion and ultrafiltration for xylan production from wheat straw and bran. ACS Symp Ser 3:38–51Google Scholar
  96. 96.
    Haimer E, Wendland M, Potthast A, Henniges U, Rosenau T, Liebner F (2010) Controlled precipitation and purification of hemicellulose from DMSO and DMSO/water mixtures by carbon dioxide as anti-solvent. J Supercrit Fluids 53:121–130CrossRefGoogle Scholar
  97. 97.
    Bian J, Peng F, Peng P, Xu F, Sun R (2010) Isolation and fractionation of hemicelluloses by graded ethanol precipitation from Caragana korshinskii. Carbohydr Res 345:802–809PubMedCrossRefGoogle Scholar
  98. 98.
    Li H, Dai Q, Ren J, Jian L, Peng F, Sun R, Liu G (2016) Effect of structural characteristics of corncob hemicelluloses fractionated by graded ethanol precipitation on furfural production. Carbohydr Polym 136:203–209PubMedCrossRefGoogle Scholar
  99. 99.
    Peng F, Bian J, Ren J, Peng P, Xu F, Sun R (2012) Fractionation and characterization of alkali-extracted hemicelluloses from pea shrub. Biomass Bioenergy 39:20–30CrossRefGoogle Scholar
  100. 100.
    Peng F, Jia N, Bian J, Peng P, Sun R (2012) Isolation and fractionation of hemicelluloses from Salix psammophila. Cellul Chem Technol 46:177Google Scholar
  101. 101.
    Peng X, Zhong L, Ren J, Sun R (2012) Highly effective adsorption of heavy metal ions from aqueous solutions by macroporous xylan-rich hemicelluloses-based hydrogel. J Agric Food Chem 60:3909–3916PubMedCrossRefGoogle Scholar
  102. 102.
    Stec J, Bicka L, Kuzmak J (2004) Isolation and purification of polyclonal IgG antibodies from bovine serum by high performance liquid chromatography. Bull Vet Inst Pulawy 48:321–328Google Scholar
  103. 103.
    Guan Y, Zhang B, Qi X, Peng F, Yao C, Sun R (2015) Fractionation of bamboo hemicelluloses by graded saturated ammonium sulphate. Carbohydr Polym 129:201–207PubMedCrossRefGoogle Scholar
  104. 104.
    Peng F, Ren JL, Xu F, Bian J, Peng P, Sun RC (2009) Fractional study of alkali-soluble hemicelluloses obtained by graded ethanol precipitation from sugar cane bagasse. J Agric Food Chem 58:1768–1776CrossRefGoogle Scholar
  105. 105.
    Li X, Sakurai N, Nevins D (2009) Characterization of kiwifruit xyloglucan. J Integr Plant Biol 51:933–941PubMedCrossRefGoogle Scholar
  106. 106.
    Bunnell K, Lau C, Lay J Jr, Gidden J, Carrier D (2015) Production and fractionation of xylose oligomers from switchgrass hemicelluloses using centrifugal partition chromatography. J Liq Chromatogr Relat Technol 38:801–809CrossRefGoogle Scholar
  107. 107.
    Habibi Y, Vignon M (2005) Isolation and characterization of xylans from seed pericarp of Argania spinosa fruit. Carbohydr Res 340:1431–1436PubMedCrossRefGoogle Scholar
  108. 108.
    Huber D, Nevins D (1981) Partial purification of endo-and exo-β-D-glucanase enzymes from Zea mays L. seedlings and their involvement in cell-wall autohydrolysis. Planta 151:206–214PubMedCrossRefGoogle Scholar
  109. 109.
    DuPont M, Selvendran R (1987) Hemicellulosic polymers from the cell walls of beeswing wheat bran: part I, polymers solubilised by alkali at 2. Carbohydr Res 163:99–113CrossRefGoogle Scholar
  110. 110.
    Gruppen H, Hamer R, Voragen A (1992) Water-unextractable cell wall material from wheat flour. 2. Fractionation of alkali-extracted polymers and comparison with water-extractable arabinoxylans. J Cereal Sci 16:53–67CrossRefGoogle Scholar
  111. 111.
    Peng F, Ren J, Xu F, Bian J, Peng P, Sun R (2010) Comparative studies on the physico-chemical properties of hemicelluloses obtained by DEAE-cellulose-52 chromatography from sugarcane bagasse. Food Res Int 43:683–693CrossRefGoogle Scholar
  112. 112.
    Yang Z, Wu D, Chen C, Cheong K, Deng Y, Chen L, Han B, Chen N, Zhao J, Li S (2016) Preparation of xylooligosaccharides from xylan by controlled acid hydrolysis and fast protein liquid chromatography coupled with refractive index detection. Sep Purif Technol 171:151–156CrossRefGoogle Scholar
  113. 113.
    Krawczyk H, Arkell A, Jönsson A (2011) Membrane performance during ultrafiltration of a high-viscosity solution containing hemicelluloses from wheat bran. Sep Purif Technol 83:144–150CrossRefGoogle Scholar
  114. 114.
    Persson T, Jönsson A (2010) Isolation of hemicelluloses by ultrafiltration of thermomechanical pulp mill process water-Influence of operating conditions. Chem Eng Res Des 88:1548–1554CrossRefGoogle Scholar
  115. 115.
    Swennen K, Courtin C, Van der Bruggen B, Vandecasteele C, Delcour J (2005) Ultrafiltration and ethanol precipitation for isolation of arabinoxylooligosaccharides with different structures. Carbohydr Polym 62:283–292CrossRefGoogle Scholar
  116. 116.
    Pinelo M, Jonsson G, Meyer A (2010) Membrane technology for purification of enzymatically produced oligosaccharides: molecular and operational features affecting performance. Sep Purif Technol 70:1–11CrossRefGoogle Scholar
  117. 117.
    Ko C, Shih T, Jhan B, Chang F, Wang Y, Wang Y (2012) Production of xylooligosaccharides from forest waste by membrane separation and Paenibacillus xylanase hydrolysis. Bioresources 8:612–627CrossRefGoogle Scholar
  118. 118.
    Baktash M, Ahsan L, Ni Y (2015) Production of furfural from an industrial pre-hydrolysis liquor. Sep Purif Technol 149:407–412CrossRefGoogle Scholar
  119. 119.
    Krukonis V (1994) Supercritical fluid extraction: principles and practice. Butterworth-Heinemann, BostonGoogle Scholar
  120. 120.
    de Diego Y, Pellikaan H, Wubbolts F, Witkamp G, Jansens P (2005) Operating regimes and mechanism of particle formation during the precipitation of polymers using the PCA process. J Supercrit Fluids 35:147–156CrossRefGoogle Scholar
  121. 121.
    De Diego Y, Pellikaan H, Wubbolts F, Borchard G, Witkamp G, Jansens P (2006) Opening new operating windows for polymer and protein micronisation using the PCA process. J Supercrit Fluids 36:216–224CrossRefGoogle Scholar
  122. 122.
    Haimer E, Wendland M, Potthast A, Rosenau T, Liebner F (2008) Precipitation of hemicelluloses from DMSO/water mixtures using carbon dioxide as an antisolvent. J Nanomater 2008:1–5CrossRefGoogle Scholar
  123. 123.
    Li Z, Pan X (2018) Strategies to modify physicochemical properties of hemicelluloses from biorefinery and paper industry for packaging material. Rev Environ Sci Bio/Technol 1–23Google Scholar
  124. 124.
    Sun R, Fanga J, Tomkinson J, Hill C (1999) Esterification of hemicelluloses from poplar chips in homogenous solution of N, N-dimethylformamide/lithium chloride. J Wood Chem Technol 19:287–306CrossRefGoogle Scholar
  125. 125.
    Kuzmenko V, Hägg D, Toriz G, Gatenholm P (2014) In situ forming spruce xylan-based hydrogel for cell immobilization. Carbohydr Polym 102:862–868PubMedCrossRefGoogle Scholar
  126. 126.
    Kisonen V, Prakobna K, Xu C, Salminen A, Mikkonen K, Valtakari D, Eklund P, Seppala J, Tenkaned M, Willför S (2015) Composite films of nanofibrillated cellulose and O-acetyl galactoglucomannan (GGM) coated with succinic esters of GGM showing potential as barrier material in food packaging. J Mater Sci 50:3189–3199CrossRefGoogle Scholar
  127. 127.
    Ebringerova A, Hromadkova Z, Malovikova A, Sasinková V, Hirsch J, Sroková I (2000) Structure and properties of water-soluble p-carboxybenzyl polysaccharide derivatives. J Appl Polym Sci 78:1191–1199CrossRefGoogle Scholar
  128. 128.
    Ebringerová A, Alföldi J, Hromádková Z, Sasinkova V, Hirsch J, Srokova I (2000) Water-soluble p-carboxybenzylated beech wood 4-O-methylglucuronoxylan: structural features and properties. Carbohydr Polym 42:123–131CrossRefGoogle Scholar
  129. 129.
    Ebringerova A, Hromadkova Z, Kačuráková M, Antal M (1994) Quaternized xylans: synthesis and structural characterization. Carbohydr Polym 24:301–308CrossRefGoogle Scholar
  130. 130.
    Šimkovic I, Gedeon O, Uhliariková I, Mendichi R, Kirschnerová S (2011) Positively and negatively charged xylan films. Carbohydr Polym 83:769–775CrossRefGoogle Scholar
  131. 131.
    Vincendon M (1998) Xylan derivatives: benzyl ethers, synthesis, and characterization. J Appl Polym Sci 67:455–460CrossRefGoogle Scholar
  132. 132.
    Amer H, Nypelö T, Sulaeva I, Bacher M, Henniges U, Potthast A, Rosenau T (2016) Synthesis and characterization of periodate-oxidized polysaccharides: dialdehyde xylan (DAX). Biomacromolecules 17:2972–2980PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Chemin M, Rakotovelo A, Ham-Pichavant F, Chollet G, Perez D, Petit-Conil M, Cramail H, Grelier S (2015) Synthesis and characterization of functionalized 4-O-methylglucuronoxylan derivatives. Holzforschung 69:713–720CrossRefGoogle Scholar
  134. 134.
    Chemin M, Rakotovelo A, Ham-Pichavant F, Periodate Chollet G, Perez D, Petit-Conil M, Cramail H (2016) Periodate oxidation of 4-O-methylglucuronoxylans: influence of the reaction conditions. Carbohydr Polym 142:45–50PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Naoshima Y, Shudo H, Uenishi M, Carraher CE Jr (1988) Structural analysis of the condensation products of xylan with organotin halides. J Macromol Sci Chem 25:895–906CrossRefGoogle Scholar
  136. 136.
    Zhang X, Chen M, Wang H, Liu C, Zhang A, Sun R (2015) Characterization of xylan-graft-polycaprolactone copolymers prepared in ionic liquid. Ind Eng Chem Res 54:6282–6290CrossRefGoogle Scholar
  137. 137.
    Šimkovic I, Tracz A, Kelnar I, Uhliarikova I, Mendichi R (2014) Quaternized and sulfated xylan derivative films. Carbohydr Polym 99:356–364PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Weber CJ (2000) Biobased packaging materials for the food industry: status and perspectives, a European concerted action. KVL, FrederiksbergGoogle Scholar
  139. 139.
    Davis G, Song JH (2006) Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind Crops Prod 23:147–161CrossRefGoogle Scholar
  140. 140.
    Kale G, Kijchavengkul T, Auras R, Rubino M, Selke S, Singh S (2007) Compostability of bioplastic packaging materials: an overview. Macromol Biosci 7:255–277PubMedCrossRefGoogle Scholar
  141. 141.
    Stevanic J, Bergström E, Gatenholm P, Berglund L, Salmén L (2012) Arabinoxylan/nanofibrillated cellulose composite films. J Mater Sci 47:6724–6732CrossRefGoogle Scholar
  142. 142.
    Stevanic J, Joly C, Mikkonen K, Pirkkalainen K, Serimaa R, Rémond C, Toriz G, Gatenholm P, Tenkanen M, Salmén L (2011) Bacterial nanocellulose-reinforced arabinoxylan films. J Appl Polym Sci 122:1030–1039CrossRefGoogle Scholar
  143. 143.
    Mikkonen K, Tenkanen M (2012) Sustainable food-packaging materials based on future biorefinery products: xylans and mannans. Trends Food Sci Tech 28:90–102CrossRefGoogle Scholar
  144. 144.
    Yaich A, Edlund U, Albertsson A (2017) Transfer of biomatrix/wood cell interactions to hemicellulose-based materials to control water interaction. Chem Rev 117:8177–8207PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Chen G, Qi X, Guan Y, Peng F, Yao C, Sun RC (2016) High strength hemicellulose-based nanocomposite film for food packaging applications. ACS Sustain Chem Eng 4:1985–1993CrossRefGoogle Scholar
  146. 146.
    Chen G, Fu G, Wang X, Gong X, Niu Y, Peng F, Yao C, Sun R (2017) Facile synthesis of high strength hot-water wood extract films with oxygen-barrier performance. Sci Rep-UK 7:41075CrossRefGoogle Scholar
  147. 147.
    Chen G, Hu Y, Peng F, Bian J, Li M, Yao C, Sun R (2018) Fabrication of strong nanocomposite films with renewable forestry waste/montmorillonite/reduction of graphene oxide for fire retardant. Chem Eng J 337:436–445CrossRefGoogle Scholar
  148. 148.
    Chen G, Qi X, Li M, Guan Y, Bian J, Peng F, Yao C, Sun R (2015) Hemicelluloses/montmorillonite hybrid films with improved mechanical and barrier properties. Sci Rep-UK 5:16405CrossRefGoogle Scholar
  149. 149.
    Zhang P, Whistler R (2004) Mechanical properties and water vapor permeability of thin film from corn hull arabinoxylan. J Appl Polym Sci 93:2896–2902CrossRefGoogle Scholar
  150. 150.
    Goksu E, Karamanlioglu M, Bakir U, Yilmaz L, Yilmazer U (2007) Production and characterization of films from cotton stalk xylan. J Agric Food Chem 55:10685–10691PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Gao C, Ren J, Zhao C, Kong W, Dai Q, Chen Q, Liu C, Sun R (2016) Xylan-based temperature/pH sensitive hydrogels for drug controlled release. Carbohydr Polym 151:189–197PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Pohjanlehto H, Setälä H, Kammiovirta K, Harlin A (2011) The use of N, N′-diallylaldardiamides as cross-linkers in xylan derivatives-based hydrogels. Carbohydr Res 346:2736–2745PubMedPubMedCentralGoogle Scholar
  153. 153.
    Dai Q, Ren J, Peng F, Chen X, Gao C, Sun R (2016) Synthesis of acylated xylan-based magnetic Fe3O4 hydrogels and their application for H2O2 detection. Materials 9:690PubMedCentralCrossRefPubMedGoogle Scholar
  154. 154.
    Wallenius J, Pahimanolis N, Zoppe J, Kilpeläinen P, Master E, Ilvesniemi H, Swppala J, Eerilainen T, Ojamo H (2015) Continuous propionic acid production with Propionibacterium acidipropionici immobilized in a novel xylan hydrogel matrix. Bioresour Technol 197:1–6PubMedCrossRefGoogle Scholar
  155. 155.
    Sun R, Sun X, Ma X (2002) Effect of ultrasound on the structural and physiochemical properties of organosolv soluble hemicelluloses from wheat straw. Ultrason Sonochem 9:95–101PubMedCrossRefGoogle Scholar
  156. 156.
    Sun X, Wang H, Jing Z, Mohanathas R (2013) Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery. Carbohydr Polym 92:1357–1366PubMedCrossRefGoogle Scholar
  157. 157.
    Wurm F, Weiss C (2014) Nanoparticles from renewable polymers. Front Chem 2:49PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Gericke M, Gabriel L, Geitel K, Benndorf S, Trivedi P, Fardim P, Heinze T (2018) Synthesis of xylan carbonates-an approach towards reactive polysaccharide derivatives showing self-assembling into nanoparticles. Carbohydr Polym 193:45–53PubMedCrossRefGoogle Scholar
  159. 159.
    Kumar S, Kumar V, Priyadarshi R, Gopinath P, Negi Y (2018) pH-responsive prodrug nanoparticles based on xylan-curcumin conjugate for the efficient delivery of curcumin in cancer therapy. Carbohydr Polym 188:252–259PubMedCrossRefGoogle Scholar
  160. 160.
    Daus S, Thomas H (2010) Xylan-based nanoparticles: prodrugs for ibuprofen release. Macromol Biosci 10:211–220PubMedCrossRefGoogle Scholar
  161. 161.
    Aro N, Pakula T, Penttilä M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29:719–739PubMedCrossRefGoogle Scholar
  162. 162.
    Chávez R, Bull P, Eyzaguirre J (2006) The xylanolytic enzyme system from the genus Penicillium. J Biotechnol 123:413–433PubMedCrossRefGoogle Scholar
  163. 163.
    Dobrev G, Zhekova B, Delcheva G, Koleva L, Tziporkov N, Pishtiyski I (2009) Purification and characterization of endoxylanase Xln-1 from Aspergillus niger B03. World J Microbiol Biotechnol 25:2095–2102CrossRefGoogle Scholar
  164. 164.
    Salles B, Cunha R, Fontes W, Sousa M, Filho E (2000) Purification and characterization of a new xylanase from Acrophialophora nainiana. J Biotechnol 81:199–204PubMedCrossRefGoogle Scholar
  165. 165.
    Mirande C, Mosoni P, Béra-Maillet C, Bernalier-Donadille A, Forano E (2010) Characterization of Xyn10A, a highly active xylanase from the human gut bacterium Bacteroides xylanisolvens XB1A. Appl Microbiol Biotechnol 87:2097–2105PubMedCrossRefGoogle Scholar
  166. 166.
    Cannio R, Prizito N, Rossi M, Morana A (2004) A xylan-degrading strain of Sulfolobus solfataricus: isolation and characterization of the xylanase activity. Extremophiles 8:117–124PubMedCrossRefGoogle Scholar
  167. 167.
    Nascimento R, Coelho R, Marques S, Alves L, Gírio F, Bon E, Amaral-Collaco M (2002) Production and partial characterisation of xylanase from Streptomyces sp. strain AMT-3 isolated from Brazilian cerrado soil. Enzym Microb Technol 31:549–555CrossRefGoogle Scholar
  168. 168.
    Guo B, Chen X, Sun C, Zhou B, Zhang Y (2009) Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-β-1,4-xylanase from marine Glaciecola mesophila KMM 241. Appl Microbiol Biotechnol 84:1107–1115PubMedCrossRefGoogle Scholar
  169. 169.
    Yin L, Lin H, Chiang Y, Jiang S (2010) Bioproperties and purification of xylanase from Bacillus sp. YJ6. J Agric Food Chem 58:557–562PubMedCrossRefGoogle Scholar
  170. 170.
    Yan Q, Hao S, Jiang Z, Zhai Q, Chen W (2009) Properties of a xylanase from Streptomyces matensis being suitable for xylooligosaccharides production. J Mol Catal B Enzym 58:72–77CrossRefGoogle Scholar
  171. 171.
    Valenzuela S, Diaz P, Pastor F (2010) Recombinant expression of an alkali stable GH10 xylanase from Paenibacillus barcinonensis. J Agric Food Chem 58:4814–4818PubMedCrossRefGoogle Scholar
  172. 172.
    Carmona E, Fialho M, Buchgnani É, Coelho G, Brocheto-Braga M, Jorge J (2005) Production, purification and characterization of a minor form of xylanase from Aspergillus versicolor. Process Biochem 40:359–364CrossRefGoogle Scholar
  173. 173.
    Lucena-Neto S, Ferreira-Filho E (2004) Purification and characterization of a new xylanase from Humicola grisea var. Thermoidea. Braz J Microbiol 35:86–90CrossRefGoogle Scholar
  174. 174.
    Ryan S, Nolan K, Thompson R, Gubitz G, Savage A, Tuohy M (2003) Purification and characterization of a new low molecular weight endoxylanase from Penicillium capsulatum. Enzym Microb Technol 33:775–785CrossRefGoogle Scholar
  175. 175.
    Han Y, Chen H (2010) A β-xylosidase from cell wall of maize: purification, properties and its use in hydrolysis of plant cell wall. J Mol Catal B Enzym 63:135–140CrossRefGoogle Scholar
  176. 176.
    Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628PubMedCrossRefGoogle Scholar
  177. 177.
    Zabed H, Sahu J, Boyce A, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sust Energ Rev 66:751–774CrossRefGoogle Scholar
  178. 178.
    Prakasham R, Rao R, Hobbs P (2009) Current trends in biotechnological production of xylitol and future prospects. Curr Trends Biotechnol Pharm 3:8–36Google Scholar
  179. 179.
    Winkelhausen E, Slobodanka K (1998) Microbial conversion of D-xylose to xylitol. J Ferment Bioeng 86:1–14CrossRefGoogle Scholar
  180. 180.
    Bassler K (1978) Biochemistry of xylitol. Appl Sci Publishers, London, pp 35–41Google Scholar
  181. 181.
    Arafa M, El-Gizawy S, Osman M, El M, Gaml M (2018) Xylitol as a potential co-crystal co-former for enhancing dissolution rate of felodipine: preparation and evaluation of sublingual tablets. Pharm Dev Technol 23:454–463PubMedCrossRefGoogle Scholar
  182. 182.
    Gargouri W, Zmantar T, Kammoun R, Kechaou N, Ghoul-Mazgar S (2018) Coupling xylitol with remineralizing agents improves tooth protection against demineralization but reduces antibiofilm effect. Microb Pathog 123:177–182PubMedCrossRefGoogle Scholar
  183. 183.
    Ding A, Teng L, Zhou Y, Chen P, Nie W (2018) Synthesis and characterization of bovine serum albumin-loaded microspheres based on star-shaped PLLA with a xylitol core and their drug release behaviors. Polym Bull 1–15Google Scholar
  184. 184.
    Rafiqul I, Sakinah A (2013) Processes for the production of xylitol-a review. Food Rev Int 29:127–156CrossRefGoogle Scholar
  185. 185.
    Games T, Marr R, Fröschl F, Siebenhofer M (1997) Extraction of furfural with carbon dioxide. Sep Sci Technol 32:355–371CrossRefGoogle Scholar
  186. 186.
    Moulik S, Khandelwal P (1989) Recovery of furfural from the prehydrolysis vapor vent condensate from a dissolving pulp plant. Res Ind 34:205–210Google Scholar
  187. 187.
    Jeřábek K, Hankova L, Prokop Z (1994) Post-crosslinked polymer adsorbents and their properties for separation of furfural from aqueous solutions. React Polym 23:107–112CrossRefGoogle Scholar
  188. 188.
    Cai C, Zhang T, Kumar R, Wyman C (2014) Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. J Chem Technol Biotechnol 89:2–10CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Gen-Que Fu
    • 1
  • Ya-Jie Hu
    • 1
  • Jing Bian
    • 1
  • Ming-Fei Li
    • 1
  • Feng Peng
    • 1
    Email author
  • Run-Cang Sun
    • 1
  1. 1.Beijing Key Laboratory of Lignocellulosic ChemistryBeijing Forestry UniversityBeijingChina

Personalised recommendations