Multiple Color Channel Local Extrema Patterns for Image Retrieval

  • L. Koteswara RaoEmail author
  • P. Rohini
  • L. Pratap Reddy
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 65)


A novel feature descriptor, multiple color channel local extremal pattern (MCLEP) is proposed in this manuscript. MCLEP combines the key features of local binary and local quantized extrema patterns in a specified neighborhood. Multi-distance information computed by the MCLEP aids in robust extraction of the texture arrangement. Further, MCLEP features are extracted for each color channel of an image. Retrieval performance of the MDLP is evaluated on benchmark datasets for CBIR, namely Corel-5000, Corel-10000, and MIT-Color Vistex, respectively. Proposed technique exhibits substantial improvement as compared to other recent feature descriptors in terms of ARP and ARR on standard databases.


Color Texture LBP, LQEP, and retrieval 


  1. 1.
    Walia E, Goyal A, Brar YS (2014) Zernike moments and LDP-weighted patches for content based image retrieval. SIViP 8:577. Scholar
  2. 2.
    Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105Google Scholar
  3. 3.
    Jégou H, Perronnin F, Douze M, Sanchez J, Perez P, Schmid C (2012) Aggregating local image descriptors into compact codes. IEEE Trans Pattern Anal Mach Intell 34(9):1704–1716CrossRefGoogle Scholar
  4. 4.
    Tsikrika T, Popescu A, Kludas J (2011) Overview of the Wikipedia image retrieval task at ImageCLEF 2011. In: The working notes for the CLEF 2011 labs and workshop, Amsterdam, The Netherlands, 19–22 Sept 2011Google Scholar
  5. 5.
    Everingham M, Eslami SMA, Van Gool L, Williams CKI, Winn J, Zisserman A (2015) The PASCAL visual object classes challenge: a retrospective. Int J Comput Vis 111(1):98–136CrossRefGoogle Scholar
  6. 6.
    Kokare M, Biswas PK, Chatterji BN (2007) Texture image retrieval using rotated wavelet filters. J Pattern Recogn Lett 28:1240–1249CrossRefGoogle Scholar
  7. 7.
    Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987CrossRefGoogle Scholar
  8. 8.
    Takala V, Ahonen T, Pietikainen M (2005) Block-based methods for image retrieval using local binary patterns. In: SCIA 2005, LNCS, vol 3450, pp 882–891CrossRefGoogle Scholar
  9. 9.
    Yao C-H, Chen S-Y (2003) Retrieval of translated, rotated and scaled color textures. Pattern Recogn 36:913–929CrossRefGoogle Scholar
  10. 10.
    Murala S, Maheshwari RP, Balasubramanian R (2012) Directional local extrema patterns: a new descriptor for content based image retrieval. Int J Multimedia Inf Retrieval 1(3):191–203CrossRefGoogle Scholar
  11. 11.
    Koteswara Rao L, Venkata Rao D, Pratap Reddy L (2016) Local mesh quantized extrema patterns for image retrieval. SpringerPlus 5:976.
  12. 12.
    Koteswara Rao L et al (2018) Local color oppugnant quantized extrema patterns for content based natural and texture image retrieval. In: Multidimensional systems and signal processing. Springer (accepted)Google Scholar
  13. 13.
    Koteswara Rao L, Venkata Rao D (2015) Local quantized extrema patterns for content-based natural and texture image retrieval. Hum Centric Comput Inf Sci.
  14. 14.

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringKoneru Lakshmaiah Education Foundation (A Deemed to-be University), Off-campus CentreHyderabadIndia
  2. 2.Department of Computer Science and Engineering, Faculty of Science &TechnologyICFAI Foundation for Higher Education (A Deemed-to be University)HyderabadIndia
  3. 3.Department of Electronics and Communication EngineeringJawaharlal Nehru Technological University Hyderabad College of EngineeringHyderabadIndia

Personalised recommendations