Advertisement

Halophytic Microbiome in Ameliorating the Stress

  • Ahmad Mahmood
  • Ryota Kataoka
  • Oğuz Can Turgay
  • Ahmet Emre YaprakEmail author
Chapter

Abstract

Stress environments hinder the crop growth and development, and under ever-increasing food demand circumstances, concerns of food security have asked for exploring options to overcome such stress conditions. High soluble/exchangeable salt stress referred to as salinity stress resulting from environmental characteristics (i.e., climate and soil parent material) and human-induced factors such as fertilization and irrigation poses serious threats to crop production in saline areas on different extents ranging from low to very high, categorically. This stress affects the plant growth through osmotic stress, which ultimately leads to several physiological disruptions including oxidative stress, nutrient imbalance, and water uptake problems. Subsequently, halophytes gained importance for their accumulation capability leading toward the development of phytoremediation techniques when manipulated through anthropogenic activities. The diversity of halophytes in such conditions offered a huge genetic pool together with wide options for recultivating such saline areas. The variety of halophytic plants also put forward the promising microorganisms associated with such plants helping in ameliorating the stress through various mechanisms, viz., antioxidant and other stress-related exudates production, 1-aminocyclopropane-1-carboxylate deaminase release, chelating agents production, and expression of stress-related genes along with widely understood enhancement of the plant growth through a multitude of processes. Such organisms including bacteria, fungi, and arbuscular mycorrhiza, epiphytic or endophytic, have been reported to enhance the phytoremediation potential of halophytes. Keeping in view the potential of halophytes and associated microbiome, this chapter will focus on genetic and agronomic potential of halophytes and role of allied microorganisms in enhancing the salinity tolerance and assisted phytoremediation of saline soils.

Keywords

Halophytes Plant growth-promoting bacteria Plant growth-promoting fungi Mycorrhiza Saline soils Salt marshes 

References

  1. Abou-Elela SI, Kamel MM, Fawzy ME (2010) Biological treatment of saline wastewater using a salt-tolerant microorganism. Desalination 250:1–5CrossRefGoogle Scholar
  2. Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D, Gucel S (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front Plant Sci 6:868.  https://doi.org/10.3389/fpls.2015.00868 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ali A, Shahzad R, Khan AL, Halo BA, Al-Yahyai R, Al-Harrasi A, Al-Rawahi A, Lee IJ (2017) Endophytic bacterial diversity of Avicennia marina helps to confer resistance against salinity stress in Solanum lycopersicum. J Plant Interact 12:312–322CrossRefGoogle Scholar
  4. Aliasgharzadeh N, Rastin SN, Towfighi H, Alizadeh A (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11:119–122.  https://doi.org/10.1007/s005720100113 CrossRefGoogle Scholar
  5. Altomare C, Norvell WA, Björkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65:2926–2933PubMedPubMedCentralGoogle Scholar
  6. Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1998) Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil 202:89–96CrossRefGoogle Scholar
  7. Angel SMM, Badillo MGC, Osuna MAI (2011) The plant growth-promoting fungus Aspergillus ustus promotes growth and induces resistance against different lifestyle pathogens in Arabidopsis thaliana. J Microbiol Biotechnol 21:686–696CrossRefGoogle Scholar
  8. Armstrong W, Wright EJ, Lythe S, Gaynard TJ (1985) Plant zonation and the effects of the spring-neap tidal cycle on soil aeration in a Humber salt marsh. J Ecol 73:323–339CrossRefGoogle Scholar
  9. Armstrong W, Justin SHFW, Beckett PM, Lythe S (1991) Root adaptation to soil waterlogging. Aquat Bot 39:57–73CrossRefGoogle Scholar
  10. Aroca R, Bago A, Sutka M, Paz JA, Cano C, Amodeo G, Ruiz-Lozano JM (2009) Expression analysis of the first arbuscular mycorrhizal fungi aquaporin described reveals concerted gene expression between salt stressed and nonstressed mycelium. Mol Plant Microbe Interact 22:1160–1178CrossRefGoogle Scholar
  11. Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42CrossRefGoogle Scholar
  12. Bárzana G, Aroca R, Paz JA, Chaumont F, Martinez-Ballesta MC, Carvajal M, Ruiz-Lozano JM (2012) Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Ann Bot 109:1009–1017PubMedPubMedCentralCrossRefGoogle Scholar
  13. Benítez T, Rincón AM, Limón MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260PubMedGoogle Scholar
  14. Bilal L, Asaf S, Hamayun M, Gul H, Iqbal A, Ullah I, Lee I-J, Hussain A (2018) Plant growth promoting endophytic fungi Asprgillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 76:117–127CrossRefGoogle Scholar
  15. Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol 33:145–212PubMedCrossRefGoogle Scholar
  16. Bødker L, Kjøller R, Rosendahl S (1998) Effect of phosphate and the arbuscular mycorrhizal fungus Glomus intraradices on disease severity of root rot of peas (Pisum sativum) caused by Aphanomyces euteiches. Mycorrhiza 8:169–174CrossRefGoogle Scholar
  17. Bothe H (2012) Arbuscular mycorrhiza and salt tolerance of plants. Symbiosis 58:7–16CrossRefGoogle Scholar
  18. Boullard B (1959) Relations entre la photopériode et l’abondance des mycorrhizes chez Aster tripolium L. Bull Soc Bot France 106:131–134CrossRefGoogle Scholar
  19. Boullard B (1964) Halophytes et mycorhizes. Bull Soc Prang Phys Veget 10:292–299Google Scholar
  20. Brown AM, Bledsoe C (1996) Spatial and temporal dynamics of mycorrhizas in Jaumea carnosa, a tidal saltmarsh halophyte. J Ecol 84:703–715CrossRefGoogle Scholar
  21. Brundrett MC, Abbott LK, Jasper DA (1999) Glomalean mycorrhizal fungi from tropical Australia. I: Comparison of the effectiveness and specificity of different isolation procedures. Mycorrhiza 8:305–314CrossRefGoogle Scholar
  22. Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281CrossRefGoogle Scholar
  23. Carvalho LM, Caçador I, Martins-Loução MA (2001) Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of the Tagus estuary (Portugal). Mycorrhiza 11:303–309PubMedCrossRefGoogle Scholar
  24. Carvalho LM, Correia PM, Caçador I, Martins-Loução MA (2003) Effects of salinity and flooding on the infectivity of salt marsh arbuscular mycorrhizal fungi in Aster tripolium L. Biol Fertil Soils 38:137–143CrossRefGoogle Scholar
  25. Chapman VJ (1960) Salt marshes and salt deserts of the world. Leonard Hill Interscience, New YorkGoogle Scholar
  26. Chen LZ, Wang GH, Hong S, Liu A, Li C, Liu YD (2009) UV-B-induced oxidative damage and protective role of exopolysaccharides in desert cyanobacterium Microcoleus vaginatus. J Integr Plant Biol 51:194–200PubMedCrossRefGoogle Scholar
  27. Chen L, Liu Y, Wu G, Veronican Njeri K, Shen Q, Zhang N, Zhang R (2016a) Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol Plant 158:34–44PubMedCrossRefGoogle Scholar
  28. Chen L-H, Zheng J-H, Shao X-H, Shen S-S, Yu Z-H, Mao X-Y, Chang T-T (2016b) Effects of Trichoderma harzianum T83 on Suaeda salsa L. in coastal saline soil. Ecol Eng 91:58–64CrossRefGoogle Scholar
  29. Cheng Z, Park E, Glick BR (2007) 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918PubMedCrossRefGoogle Scholar
  30. Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592PubMedPubMedCentralCrossRefGoogle Scholar
  31. Corkıdı L, Rıncön E (1997) Arbuscular mycorrhizae in a tropical sand dune ecosystem on the Gulf of Mexico. I: Mycorrhizal status and inoculum potential along a successional gradient. Mycorrhiza 7:9–15CrossRefGoogle Scholar
  32. Dalpé Y, Diop TA, Plenchette C, Gueye M (2000) Glomales species associated with surface and deep rhizosphere of Faidherbia albida in Senegal. Mycorrhiza 10:125–129CrossRefGoogle Scholar
  33. Diby P, Srinivasan B, Sudha N (2005) Osmotolerance in biocontrol strain of Pseudomonas pseudoalcaligenes MSP-538: a study using osmolyte, protein and gene expression profiling. Ann Microbiol 55:243–247Google Scholar
  34. Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694PubMedCrossRefGoogle Scholar
  35. Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428PubMedCrossRefGoogle Scholar
  36. Enache M, Neagu S, Cojoc R (2014) Extracellular hydrolases of halophilic microorganisms isolated from hypersaline environments (salt mine and salt lakes). Sci Bull Series F Biotechnol 18:20–25Google Scholar
  37. Etesami H, Beattie GA (2018) Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol 9:148PubMedPubMedCentralCrossRefGoogle Scholar
  38. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280PubMedPubMedCentralCrossRefGoogle Scholar
  39. Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22:203–217PubMedCrossRefGoogle Scholar
  40. Feng G, Zhang FS, Li XL, Tian CY, Tyang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190PubMedCrossRefGoogle Scholar
  41. Fernandez-Aunión C, Hamouda TB, Iglesias-Guerra F, Argandoña M, Reina-Bueno M, Nieto JJ, Aouani ME, Vargas C (2010) Biosynthesis of compatible solutes in rhizobial strains isolated from Phaseolus vulgaris nodules in Tunisian fields. BMC Microbiol 10:192–192PubMedPubMedCentralCrossRefGoogle Scholar
  42. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179(4):945–963PubMedCrossRefGoogle Scholar
  43. Frank B (1888) Uber die physiologische Bedeutung der Mycorrhiza. Ber Dtsch Bot Ges 6:248–269Google Scholar
  44. Fries N (1944) Beobachtungen über die thamniscophage Mykorrhiza einiger Halophyten. Bol Not 2:255–264Google Scholar
  45. Füzy A, Biro B, Toth T, Hildebrandt U, Bothe H (2008) Drought, but not salinity, determines the apparent effectiveness of halophytes colonized by arbuscular mycorrhizal fungi. J Plant Physiol 165:1181–1192PubMedCrossRefGoogle Scholar
  46. Garrill A, Clipson NJW, Jennings DH (1992) Preliminary observations on the monovalent cation relations of Thraustochytrium aureum, a fungus requiring sodium for growth. Mycol Res 96:295–304CrossRefGoogle Scholar
  47. Gaur A, Adholeya A (2002) Arbuscular–mycorrhizal inoculation of five tropical fodder crops and inoculum production in marginal soil amended with organic matter. Biol Fertil Soils 35:214–218CrossRefGoogle Scholar
  48. Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312PubMedCrossRefGoogle Scholar
  49. Goldstein AH (2009) Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am J Alternat Agric 1:51–57CrossRefGoogle Scholar
  50. Gostinčar C, Turk M, Plemenitaš A, Gunde-Cimerman N (2009) The expressions of Δ9-, Δ12-desaturases and an elongase by the extremely halotolerant black yeast Hortaea werneckii are salt dependent. FEMS Yeast Res 9:247–256PubMedCrossRefGoogle Scholar
  51. Gostinčar C, Lenassi M, Gunde-Cimerman N, Plemenitaš A (2011) Chapter 3 – Fungal adaptation to extremely high salt concentrations. In: Laskin AI, Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 77. Academic, New York, pp 71–96Google Scholar
  52. Goswami D, Dhandhukia P, Patel P, Thakker JN (2014) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169:66–75PubMedCrossRefGoogle Scholar
  53. Grzybowska B (2004) Arbuscular mycorrhiza of herbs colonizing a salt affected area near Krakow (Poland). Acta Soc Bot Pol 73:247–253CrossRefGoogle Scholar
  54. Guadarrama P, Álvarez-Sánchez FJ (1999) Abundance of arbuscular mycorrhizal fungi spores in different environments in a tropical rain forest, Veracruz, Mexico. Mycorrhiza 8:267–270CrossRefGoogle Scholar
  55. Guillot A, Obis D, Mistou MY (2000) Fatty acid membrane composition and activation of glycine-betaine transport in Lactococcus lactis subjected to osmotic stress. Int J Food Microbiol 55:47–51PubMedCrossRefGoogle Scholar
  56. Gunde-Cimerman N, Zalar P (2014) Extremely halotolerant and halophilic fungi inhabit brine in solar salterns around the globe. Food Technol Biotechnol 52:170–179Google Scholar
  57. Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A (2000) Hypersaline waters in salterns – natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240Google Scholar
  58. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, LondonGoogle Scholar
  59. Hashem A, Abd_Allah EF, Alqarawi AA, Al-Huqail AA, Wirth S, Egamberdieva D (2016) The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Front Microbiol 7:1089.  https://doi.org/10.3389/fmicb.2016.01089 CrossRefPubMedPubMedCentralGoogle Scholar
  60. He AL, Niu SQ, Zhao Q, Li YS, Gou JY, Gao HJ, Suo SZ, Zhang JL (2018) Induced salt tolerance of perennial ryegrass by a novel bacterium strain from the rhizosphere of a desert shrub Haloxylon ammodendron. Int J Mol Sci 19. doi: https://doi.org/10.3390/ijms19020469 PubMedCentralCrossRefGoogle Scholar
  61. Hedi A, Sadfi N, Fardeau ML, Rebib H, Cayol JL, Ollivier B, Boudabous A (2009) Studies on the biodiversity of halophilic microorganisms isolated from El-Djerid Salt Lake (Tunisia) under aerobic conditions. Int J Microbiol.  https://doi.org/10.1155/2009/731786 CrossRefGoogle Scholar
  62. Hildebrandt U, Janetta K, Ouziad F, Renne B, Nawrath K, Bothe H (2001) Arbuscular mycorrhizal colonization of halophytes in central European salt marshes. Mycorrhiza 10:175–183CrossRefGoogle Scholar
  63. Ho I (1987) Vesicular-arbuscular mycorrhiza of halophytic grasses in the Alvord desert of Oregon. Northwest Sci 61:148–151Google Scholar
  64. Hoefnagels MH, Broome SW, Shafer SR (1993) Vesicular-arbuscular mycorrhizae in salt marshes in North Carolina. Estuaries 16:851–858CrossRefGoogle Scholar
  65. Hossain MM, Sultana F, Kubota M, Koyama H, Hyakumachi M (2007) The plant growth-promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals. Plant Cell Physiol 48:1724–1736PubMedCrossRefGoogle Scholar
  66. Hossain MM, Sultana F, Islam S (2017) Plant growth-promoting fungi (PGPF): phytostimulation and induced systemic resistance. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives: microbial interactions and agro-ecological impacts. Springer, Singapore, pp 135–191Google Scholar
  67. Hyakumachi M (1994) Plant-growth-promoting fungi from Turfgrass rhizosphere with potential for disease suppression. Soil Microorg 44:53–68Google Scholar
  68. Imhoff JF (2017) Anoxygenic phototrophic bacteria from extreme environments. In: Hallenbeck PC (ed) Modern topics in the phototrophic prokaryotes: environmental and applied aspects. Springer, Cham, pp 427–480CrossRefGoogle Scholar
  69. Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16.  https://doi.org/10.1007/s00374-002-0546-5 CrossRefGoogle Scholar
  70. Jha B, Gontia I, Hartmann A (2012) The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil 356:265–277CrossRefGoogle Scholar
  71. Jindal V, Atwal A, Sekhon BS, Singh R (1993) Effect of vesicular-arbuscular mycorrhizae on metabolism of moong plants under sodium chloride salinity. Plant Physiol Biochem 31(475):481Google Scholar
  72. Joner Erik J, Leyval C (2003) Rhizosphere gradients of polycyclic aromatic hydrocarbon (PAH) dissipation in two industrial soils and the impact of Arbuscular mycorrhiza. Environ Sci Technol 37:2371–2375PubMedCrossRefGoogle Scholar
  73. Juniper S, Abbott LK (1993) Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4(45):57Google Scholar
  74. Kahn AG (1974) The occurrence of mycorrhizas in halophytes, hydrophytes and xerophytes, and of Endogone spores in adjacent soils. J Gen Microbiol 81:7–14CrossRefGoogle Scholar
  75. Kasim WA, Gaafar RM, Abou-Ali RM, Omar MN, Hewait HM (2016) Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Ann Agric Sci 61:217–227CrossRefGoogle Scholar
  76. Kataoka R, Güneri E, Turgay OC, Yaprak AE, Sevilir B, Başköse I (2017) Sodium-resistant plant growth-promoting rhizobacteria isolated from a halophyte, Salsola grandis, in saline-alkaline soils of Turkey. Eur J Soil Sci 6(3):216Google Scholar
  77. Khan AG (1993) Occurrence and importance of mycorrhizae in aquatic trees of New South Wales, Australia. Mycorrhiza 3:31–38CrossRefGoogle Scholar
  78. Khan AG, Belik M (1995) Occurrence and ecological significance of mycorrhizal symbiosis in aquatic plants. In: Varma A, Hock B (eds) Mycorrhiza. Structure, function, molecular biology and biotechnology. Springer, Berlin/Heidelberg/New York, pp 627–666Google Scholar
  79. Khan SA, Hamayun M, Yoon H, Kim HY, Suh SJ, Hwang SK, Kim JM, Lee IJ, Choo YS, Yoon UH, Kong WS, Lee BM, Kim JG (2008) Plant growth promotion and Penicillium citrinum. BMC Microbiol 8:231.  https://doi.org/10.1186/1471-2180-8-231 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Khan AL, Hamayun M, Kim Y-H, Kang S-M, Lee J-H, Lee I-J (2011) Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochem 46:440–447CrossRefGoogle Scholar
  81. Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:3–3PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kim C-K, Weber DJ (1985) Distribution of VA mycorrhiza on halophytes on inland salt playas. Plant Soil 83:207–214CrossRefGoogle Scholar
  83. Klein W, Weber MHW, Marahiel MA (1999) Cold shock response of Bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J Bacteriol 181:5341–5349PubMedPubMedCentralGoogle Scholar
  84. Kumar S, Karan R, Kapoor S, Singh SP, Khare SK (2012) Screening and isolation of halophilic bacteria producing industrially important enzymes. Braz J Microbiol 43:1595–1603PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kunte HJ, Trüper HG, Stan-Lotter H (2002) Halophilic microorganisms. In: Horneck G, Baumstark-Khan C (eds) Astrobiology: the quest for the conditions of life. Springer, Berlin/Heidelberg, pp 185–200CrossRefGoogle Scholar
  86. Lamosa P, Martins LO, Da Costa MS, Santos H (1998) Effects of temperature, salinity, and medium composition on compatible solute accumulation by Thermococcus spp. Appl Environ Microbiol 64:3591–3598PubMedPubMedCentralGoogle Scholar
  87. Landwehr M, Hildebrandt U, Wilde P, Nawrath K, Tóth T, Biró B, Bothe H (2002) The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza 12:199–211PubMedCrossRefGoogle Scholar
  88. Lamosa P, Burke A, Peist R, Huber R, Liu MY, Silva G, Rodrigues-Pousada C, LeGall J, Maycock C, Santos H (2000) Thermostabilization of proteins by diglycerol phosphate, a new compatible solute from the hyperthermophile Archaeoglobus fulgidus. Appl Environ Microbiol 66:1974–1979PubMedPubMedCentralCrossRefGoogle Scholar
  89. Leitão AL, Enguita FJ (2015) Editorial: secondary metabolism. An unlimited foundation for synthetic biology. Front Microbiol 6:1562PubMedGoogle Scholar
  90. Leung H-M, Wang Z-W, Ye Z-H, Yung K-L, Peng X-L, Cheung K-C (2013) Interactions between arbuscular mycorrhizae and plants in phytoremediation of metal-contaminated soils: a review. Pedosphere 23:549–563CrossRefGoogle Scholar
  91. Liu S, Hao H, Lu X, Zhao X, Wang Y, Zhang Y, Xie Z, Wang R (2017) Transcriptome profiling of genes involved in induced systemic salt tolerance conferred by Bacillus amyloliquefaciens FZB42 in Arabidopsis thaliana. Sci Rep 7:10795.  https://doi.org/10.1038/s41598-017-11308-8 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Lutts S, Lefèvre I (2015) How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Ann Bot 115:509–528PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A (2010) Halophiles 2010: life in saline environments. Appl Environ Microbiol 76:6971–6981PubMedPubMedCentralCrossRefGoogle Scholar
  94. Maciá-Vicente JG, Ferraro V, Burruano S, Lopez-Llorca LV (2012) Fungal assemblages associated with roots of halophytic and non-halophytic plant species vary differentially along a salinity gradient. Microb Ecol 64:668–679PubMedCrossRefGoogle Scholar
  95. Mahmood A, Turgay OC, Farooq M, Hayat R (2016) Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol 92. doi: https://doi.org/10.1093/femsec/fiw112 PubMedCrossRefGoogle Scholar
  96. Mapelli F, Marasco R, Rolli E, Barbato M, Cherif H, Guesmi A, Ouzari I, Daffonchio D, Borin S (2013) Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. Biomed Res Int 2013:13CrossRefGoogle Scholar
  97. Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83PubMedCrossRefGoogle Scholar
  98. Mason E (1928) Note on the presence of mycorrhizae in the roots of salt-marsh plants. New Phytol 27:193–195CrossRefGoogle Scholar
  99. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572PubMedCrossRefGoogle Scholar
  100. Meera M, Shivanna M, Kageyama K, Hyakumachi M (1994) Plant growth promoting fungi from zoysiagrass rhizosphere as potential inducers of systemic resistance in cucumbers. Phytopathology 84:1399–1406CrossRefGoogle Scholar
  101. Mesbah NM, Wiegel J (2012) Life under multiple extreme conditions: diversity and physiology of the halophilic alkalithermophiles. Appl Environ Microbiol 78:4074–4082PubMedPubMedCentralCrossRefGoogle Scholar
  102. Miller SP (1999) Arbuscular mycorrhizal colonization of semiaquatic grasses along a wide hydrologic gradient. New Phytol 145:145–155CrossRefGoogle Scholar
  103. Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic, Dordrecht, pp 3–18CrossRefGoogle Scholar
  104. Murali M, Amruthesh KN (2015) Plant growth-promoting fungus penicillium oxalicum enhances plant growth and induces resistance in pearl millet against Downy mildew disease. J Phytopathol 163:743–754CrossRefGoogle Scholar
  105. Naidoo G, McKee KL, Mendelssohn IA (1992) Anatomical and metabolic responses to waterlogging and salinity in Spartina alterniflora and S. patens (Poaceae). Am J Bot 79:765–770CrossRefGoogle Scholar
  106. Navarro-Torre S, Barcia-Piedras JM, Mateos-Naranjo E, Redondo-Gómez S, Camacho M, Caviedes MA, Pajuelo E, Rodríguez-Llorente ID (2017) Assessing the role of endophytic bacteria in the halophyte Arthrocnemum macrostachyum salt tolerance. Plant Biol 19:249–256PubMedCrossRefGoogle Scholar
  107. Neto D, Carvalho LM, Cruz C, Martins-Loução MA (2006) How do mycorrhizas affect C and N relationships in flooded Aster tripolium plants? Plant Soil 279:51–63CrossRefGoogle Scholar
  108. Niu S-Q, Li H-R, Paré PW, Aziz M, Wang S-M, Shi H, Li J, Han Q-Q, Guo S-Q, Li J, Guo Q, Ma Q, Zhang J-L (2016) Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria. Plant Soil 407:217–230CrossRefGoogle Scholar
  109. Orhan F, Gulluce M (2015) Isolation and characterization of salt-tolerant bacterial strains in salt-affected soils of Erzurum, Turkey. Geomicrobiol J 32:521–529CrossRefGoogle Scholar
  110. Paul EA, Clark FE (1996) Soil microbiology and biochemistry. Academic Press, San DiegoGoogle Scholar
  111. Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34:737–752CrossRefGoogle Scholar
  112. Paul D, Nair S (2008) Stress adaptations in a Plant Growth Promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48:378–384PubMedCrossRefGoogle Scholar
  113. Paul D, Dineshkumar N, Nair S (2006) Proteomics of a plant growth-promoting rhizobacterium, Pseudomonas fluorescens MSP-393, subjected to salt shock. World J Microbiol Biotechnol 22:369–374CrossRefGoogle Scholar
  114. Peat HJ, Fitter AH (1993) The distribution of arbuscular mycorrhizas in the British flora. New Phytol 125:843–854CrossRefGoogle Scholar
  115. Pennings SC, Callaway RM (1992) Salt marsh plant zonation: the relative importance of competition and physical factors. Ecology 73:681–690CrossRefGoogle Scholar
  116. Pfeiffer CM, Bloss HE (1988) Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicular-arbuscular mycorrhiza and phosphorus fertilization. New Phytol 108:315–321CrossRefGoogle Scholar
  117. Plemenitaš A, Vaupotič T, Lenassi M, Kogej T, Gunde-Cimerman N (2008) Adaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: a molecular perspective at a glance. Stud Mycol 61:67–75PubMedPubMedCentralCrossRefGoogle Scholar
  118. Porcel P, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200CrossRefGoogle Scholar
  119. Porras-Soriano A, Soriano-Martin M, Porras-Piedra A, Azcón R (2010) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359CrossRefGoogle Scholar
  120. Prista C, Loureiro-Dias MC, Montiel V, García R, Ramos J (2005) Mechanisms underlying the halotolerant way of Debaryomyces hansenii. FEMS Yeast Res 5:693–701PubMedCrossRefGoogle Scholar
  121. Rampelotto PH (2010) Resistance of microorganisms to extreme environmental conditions and its contribution to astrobiology. Sustainability 2:1602–1623CrossRefGoogle Scholar
  122. Rozema J, Arp W, Van Diggelen J, Van Esbroek M, Broekman R, Punte H (1986) Occurrence and ecological significance of vesicular-arbuscular mycorrhiza in the salt marsh environment. Acta Bot Neerl 35:457–467CrossRefGoogle Scholar
  123. Ruiz-Lozano JM, Azcón R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10:137–143CrossRefGoogle Scholar
  124. Ruiz-Lozano JM, Azcón R, Gómez M (1996) Alleviation of salt stress by arbuscular mycorrhizal Glomus species in Lactuca sativa plants. Physiol Plant 98:767–772CrossRefGoogle Scholar
  125. Ruiz-Lozano JM, Porcel R, Azcón R, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63:4033–4044PubMedCrossRefGoogle Scholar
  126. Ruppel S, Franken P, Witzel K (2013) Properties of the halophyte microbiome and their implications for plant salt tolerance. Funct Plant Biol 40:940–951CrossRefGoogle Scholar
  127. Saldajeno MGB, Hyakumachi M (2011) The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae stimulate plant growth and reduce severity of anthracnose and damping-off diseases in cucumber (Cucumis sativus) seedlings. Ann Appl Biol 159:28–40CrossRefGoogle Scholar
  128. Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26CrossRefGoogle Scholar
  129. Saum SH, Müller V (2008a) Growth phase-dependent switch in osmolyte strategy in a moderate halophile: ectoine is a minor osmolyte but major stationary phase solute in Halobacillus halophilus. Environ Microbiol 10:716–726PubMedCrossRefGoogle Scholar
  130. Saum SH, Müller V (2008b) Regulation of osmoadaptation in the moderate halophile Halobacillus halophilus: chloride, glutamate and switching osmolyte strategies. Saline Syst 4:4–4PubMedPubMedCentralCrossRefGoogle Scholar
  131. Scheloske S, Maetz M, Schneider T, Hildebrandt U, Bothe H, Povh H (2004) Element distribution in mycorrhizal and nonmycorrhizal roots of the halophyte Aster tripolium determined by proton induced X-ray emisision. Protoplasma 223:183–189PubMedCrossRefGoogle Scholar
  132. Schubert S, Neubert A, Schierholt A, Sumer A, Zorb C (2009) Development of salt-resistant maize hybrids: the combination of physiological strategies using conventional breeding methods. Plant Sci 177:196–202CrossRefGoogle Scholar
  133. Sengupta A, Chaudhari S (1990) Vesicular arbuscular mycorrhiza (VAM) in pioneer salt marsh plants of the Ganges river delta in West Bengal (India). Plant Soil 122:111–113CrossRefGoogle Scholar
  134. Sengupta A, Chaudhurı S (2002) Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza 12:169–174PubMedCrossRefGoogle Scholar
  135. Sharifi M, Ghorbanli M, Ebrahimzadeh H (2006) Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J Plant Physiol 164(2007):1144–1151PubMedGoogle Scholar
  136. Siliakus MF, van der Oost J, Kengen SWM (2017) Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 21:651–670PubMedPubMedCentralCrossRefGoogle Scholar
  137. Siqueira JO, Saggin-Júnior OJ (2001) Dependency on arbuscular mycorrhizal fungi and responsiveness of some Brazilian native woody species. Mycorrhiza 11:245–255CrossRefGoogle Scholar
  138. Slezack S, Dumas-Gaudot E, Paynot M, Gıanınazzı S (2000) Is a fully established arbuscular mycorrhizal symbiosis required for bioprotection of Pisum sativum roots against Aphanomyces euteiches? Mol Plant Microbe Interact 13:238–241PubMedCrossRefGoogle Scholar
  139. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, San DiegoGoogle Scholar
  140. Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas P, Krishnani K (2016) Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol 180:872–882PubMedCrossRefGoogle Scholar
  141. Stocker O (1928) Das halophytenproblem. Ergeb Biol 3:265–353.  https://doi.org/10.1007/978-3-642-91065-4_4 CrossRefGoogle Scholar
  142. Strack D, Fester T, Hause B, Schliemann W, Walter MH (2003) Arbuscular mycorrhiza: biological, chemical, and molecular aspects. J Chem Ecol 29:1955–1979PubMedCrossRefGoogle Scholar
  143. Suárez R, Wong A, Ramírez M, Barraza A, Orozco MDC, Cevallos MA, Lara M, Hernández G, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant-Microbe Interact 21:958–966PubMedCrossRefGoogle Scholar
  144. Szymańska S, Piernik A, Baum C, Złoch M, Hrynkiewicz K (2014) Metabolic profiles of microorganisms associated with the halophyte Salicornia europaea in soils with different levels of salinity. Ecoscience 21:114–122CrossRefGoogle Scholar
  145. Szymańska S, Płociniczak T, Piotrowska-Seget Z, Hrynkiewicz K (2016) Endophytic and rhizosphere bacteria associated with the roots of the halophyte Salicornia europaea L. – community structure and metabolic potential. Microbiol Res 192:37–51PubMedCrossRefGoogle Scholar
  146. Titus JH, Titus PJ, Nowak RS, Smith SD (2002) Arbuscular mycorrhizae of Mojave Desert plants. West N Am Nat 62:327–334Google Scholar
  147. Tresner HD, Hayes JA (1971) Sodium chloride tolerance of terrestrial fungi. Appl Microbiol 22:210–213PubMedPubMedCentralGoogle Scholar
  148. Turk M, Méjanelle L, Šentjurc M, Grimalt JO, Gunde-Cimerman N, Plemenitaš A (2004) Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles 8:53–61PubMedCrossRefGoogle Scholar
  149. Ullah S, Bano A (2015) Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity. Can J Microbiol 61:307–313PubMedCrossRefGoogle Scholar
  150. van der Meer JR (2003) Evolution of metabolic pathways for degradation of environmental pollutants. In: Encyclopedia of agrochemicals. Wiley, New York. doi: https://doi.org/10.1002/0471263397.env011
  151. Ventosa A, Mellado E, Sanchez-Porro C, Marquez MC (2008) Halophilic and halotolerant micro-organisms from soils. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Springer, Berlin/Heidelberg, pp 87–115CrossRefGoogle Scholar
  152. Viterbo A, Landau U, Kim S, Chernin L, Chet I (2010) Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 305:42–48PubMedCrossRefGoogle Scholar
  153. Vohník M, Albrechtová J (2011) The co-occurrence and morphological continuum between ericoid mycorrhiza and dark septate endophytes in roots of six European Rhododendron species. Folia Geobot 46:373–386.  https://doi.org/10.1007/s12224-011-9098-5 CrossRefGoogle Scholar
  154. Vurukonda SSKP, Vardharajula S, Shrivastava M, Ali SKZ (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24PubMedCrossRefGoogle Scholar
  155. Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel K-H (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391PubMedPubMedCentralCrossRefGoogle Scholar
  156. Walter H (1968) Die Vegetation der Erde in öko-physiologischer Betrachtung, vol 2 Die gemäßigten und arktischen Zonen. Gustav Fischer Verlag, JenaGoogle Scholar
  157. Whatmore AM, Chudek JA, Reed RH (1990) The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. Microbiology 136:2527–2535Google Scholar
  158. Wijman JGE, de Leeuw PPLA, Moezelaar R, Zwietering MH, Abee T (2007) Air-liquid interface biofilms of Bacillus cereus: formation, sporulation, and dispersion. Appl Environ Microbiol 73:1481–1488PubMedPubMedCentralCrossRefGoogle Scholar
  159. Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107CrossRefGoogle Scholar
  160. Wright SF, Upadhyaya A (1999) Quantification of arbuscular mycorrhizal fungi activity by the glomalin concentration on hyphal traps. Mycorrhiza 8:283–285CrossRefGoogle Scholar
  161. Wu QS, Zou YN, Liu W, Ye XF, Zai HF, Zhao LJ (2010) Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defence systems. Plant Soil Environ 56:470–475CrossRefGoogle Scholar
  162. Wu QS, Zou YN, Fathi Abd-Allah E (2014) Chapter 15 – Mycorrhizal association and ROS in plants A2. In: Parvaiz A (ed) Oxidative damage to plants. Academic, San Diego, pp 453–475CrossRefGoogle Scholar
  163. Xiang W, Guo J, Feng W, Huang M, Chen H, Zhao J, Zhang J, Yang Z, Sun Q (2008) Community of extremely halophilic bacteria in historic Dagong brine well in southwestern China. World J Microbiol Biotechnol 24:2297–2305CrossRefGoogle Scholar
  164. Yaish MW, Al-Lawati A, Jana GA, Vishwas Patankar H, Glick BR (2016) Impact of soil salinity on the structure of the bacterial endophytic community identified from the roots of caliph medic (Medicago truncatula). PLoS One 11:e0159007.  https://doi.org/10.1371/journal.pone.0159007 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4PubMedCrossRefGoogle Scholar
  166. Yedidia I, Srivastva AK, Kapulnik Y, Chet I (2001) Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 235:235–242CrossRefGoogle Scholar
  167. Yuan Z, Druzhinina IS, Labbé J, Redman R, Qin Y, Rodriguez R, Zhang C, Tuskan GA, Lin F (2016) Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Sci Rep 6:32467.  https://doi.org/10.1038/srep32467 CrossRefPubMedPubMedCentralGoogle Scholar
  168. Yukimura K, Nakai R, Kohshima S, Uetake J, Kanda H, Naganuma T (2009) Spore-forming halophilic bacteria isolated from Arctic terrains: implications for long-range transportation of microorganisms. Pol Sci 3:163–169CrossRefGoogle Scholar
  169. Zajc J, Kogej T, Galinski EA, Ramos J, Gunde-Cimerman N (2014) Osmoadaptation strategy of the most halophilic fungus, Wallemia ichthyophaga, growing optimally at salinities above 15% NaCl. Appl Environ Microbiol 80:247–256PubMedPubMedCentralCrossRefGoogle Scholar
  170. Zhang S, Gan Y, Xu B (2016) Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Front Plant Sci 7:1405PubMedPubMedCentralGoogle Scholar
  171. Zhao Z-W, Xia Y-M, Qin X-Z, Li X-W, Cheng L-Z, Sha T, Wang G-H (2001) Arbuscular mycorrhizal status of plants and the spore density of arbuscular mycorrhizal fungi in the tropical rain forest of Xishuangbanna, Southwest China. Mycorrhiza 11:159–162PubMedCrossRefGoogle Scholar
  172. Zhao S, Zhou N, Wang L, Tian CY (2013) Halophyte-endophyte coupling: a promising bioremediation system for oil-contaminated soil in Northwest China. Environ Sci Technol 47:11938–11939PubMedCrossRefGoogle Scholar
  173. Zhao S, Zhou N, Zhao Z-Y, Zhang K, Wu G-H, Tian C-Y (2016) Isolation of endophytic plant growth-promoting bacteria associated with the halophyte Salicornia europaea and evaluation of their promoting activity under salt stress. Curr Microbiol 73:574–581PubMedCrossRefGoogle Scholar
  174. Zhou N, Zhao S, Tian C-Y (2017) Effect of halotolerant rhizobacteria isolated from halophytes on the growth of sugar beet (Beta vulgaris L.) under salt stress. FEMS Microbiol Lett 364:fnx091CrossRefGoogle Scholar
  175. Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31:497–513CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ahmad Mahmood
    • 1
  • Ryota Kataoka
    • 1
  • Oğuz Can Turgay
    • 2
  • Ahmet Emre Yaprak
    • 3
    Email author
  1. 1.Department of Environmental Sciences, Faculty of Life & Environmental SciencesUniversity of YamanashiYamanashiJapan
  2. 2.Department of Soil Science and Plant Nutrition, Faculty of AgricultureAnkara UniversityAnkaraTurkey
  3. 3.Department of Biology, Faculty of ScienceAnkara UniversityAnkaraTurkey

Personalised recommendations