Advertisement

Halophyte Growth and Physiology Under Metal Toxicity

  • Anita Kumari
  • Sunita Sheokand
  • Pooja
  • Ashwani Kumar
  • Anita Mann
  • Neeraj Kumar
  • Sarita Devi
  • Babita Rani
  • Arvind Kumar
  • B. L. Meena
Chapter

Abstract

Heavy metals are present in low concentration in soil as their natural constituents. However various anthropogenic, industrial activities and agricultural practices have resulted in an increase in the concentration of heavy metals to toxic levels and thus become a limiting factor, affecting the sustainability of agricultural production. Environmental degradation due to increase in heavy metal is a serious issue which requires immediate remediation. To add to the problem large areas of agricultural land with heavy metal pollution are also affected by salinity particularly in arid and semiarid regions. Heavy metals inhibit plant growth and development and may be lethal at high concentrations. Heavy metal toxicity leads to a reduction of assimilation rate, respiration, nutrient uptake and increased oxidative stress. Oxidative stress damages various metabolic pathways which in turn affect the physiological and biochemical processes and cause a reduction in plant growth and productivity. Halophytes are salt-tolerant plants which can grow and reproduce in saline areas where glycophytes cannot survive. Due to special adaptive mechanism present in halophytes, they can be grown in saline soils which are also heavy metal-contaminated. However halophytes are also adversely affected by higher concentration of heavy metals (Cd, Cr, Pb and Ni). Halophytes have additional advantages as compared to glycophytes like higher tolerance to heavy metal and increased heavy metal uptake. Various studies revealed that halophytic plants are also tolerant to other abiotic stresses like temperature, drought and heavy metals. This may be due to the activated antioxidative system against ROS-induced oxidative stress. So the halophytic plants can be used for phytoremediation purpose in salt and heavy metal-contaminated soil. Among the halophytic flora, species having high biomass and deep root system are most suitable.

Keywords

Growth Halophytes Heavy metals Metallothioneins Osmoregulation Oxidative metabolism Phytochelatins Phytoremediation 

Abbreviations

ABC transporters

ATP-binding cassette transporter

APX

Ascorbate peroxidase

As

Net assimilation rate

Ca

Calcium

CAT

Catalase

CAX

Cation exchanger

Cd

Cadmium

CdCl2

Cadmium chloride

Chl

Chlorophyll

Co

Cobalt

Cr

Chromium

Cu

Copper

Cys

Cysteine

GB

Glycinebetaine

GPX

Glutathione peroxidase

GR

Glutathione reductase

gs

Stomatal conductance

GSH

Reduced form of glutathione

H2O2

Hydrogen peroxide

Hg

Mercury

HM

Heavy metal

K+

Potassium ion

KCl

Potassium chloride

LOX

Lipoxygenase

MDA

Malondialdehyde

Mg

Magnesium

MTs

Metallothioneins

N

Nitrogen

NaCl

Sodium chloride

NADPH

Reduced form of nicotinamide adenine dinucleotide phosphate

NaNO3

Sodium nitrate

Ni

Nickel

O2

Superoxide anion

OH

Hydroxyl radical

PAs

Polyamines

Pb

Lead

PCD

Programmed cell death

PCs

Phytochelatins

POX

Peroxidase

PS II

Photosystem II

ROS

Reactive oxygen species

S

Sulphur

SO42

Sulphate

SOD

Superoxide dismutase

V

Vanadium

Zn

Zinc

References

  1. Acosta JA, Jansen B, Kalbitz K, Faz A, Martínez-Martínez S (2011) Salinity increases mobility of heavy metals in soils. Chemosphere 85:1318–1324PubMedCrossRefGoogle Scholar
  2. Aidid SB, Okamoto H (1993) Responses of elongation growth rate, turgor pressure and cell wall extensibility of stem cells of Impatiens balsamina to lead, cadmium and zinc. Biometals 6:245–249CrossRefGoogle Scholar
  3. Ajmal M, Nomani AA, Khan MA (1984) Pollution in the Ganga River, India. Water Sci Technol 16:347–358CrossRefGoogle Scholar
  4. Almeida CMR, Mucha AP, Vascancelos MTSD (2006) Variability of metal contents in the sea rush Juncus maritimus- estuarine sediment system through one year of plant’s life. Mar Environ Res 61:424–438PubMedCrossRefGoogle Scholar
  5. Almeida CMR, Mucha AP, Teresa Vasconcelos M (2011) Role of different salt marsh plants on metal retention in an urban estuary (Lima estuary, NW Portugal). Estuar Coast Shelf Sci 91(2):243–249CrossRefGoogle Scholar
  6. Amari T, Ghnaya T, Sghaier S, Porrini M, Lucchini G, Attilio Sacchi G, Abdelly C (2016) Evaluation of the Ni2+ phytoextraction potential in Mesembryanthemum crystallinum (Halophyte) and Brassica juncea. J Bioremed Biodegr 7(2):1–7.  https://doi.org/10.4172/2155-6199.1000336 CrossRefGoogle Scholar
  7. Andrades-Moreno L, Cambrolle J, Figueroa ME, Mateos-Naranjo E (2013) Growth and survival of Halimione portulacoides stem cuttings in heavy metal contaminated soils. Mar Pollut Bull 75:28–32PubMedCrossRefGoogle Scholar
  8. Anjum NA, Ahmad I, Valega M, Mohmood I, Gill SS, Tuteja N, Duarte AC, Pereira E (2014) Salt marsh halophyte services to metal–metalloid remediation: assessment of the processes and underlying mechanisms. Crit Rev Environ Sci Technol 44(18):2038–2106CrossRefGoogle Scholar
  9. Arcega-Cabrera F, Garza-Pérez R, Noreña-Barroso E, Oceguera-Vargas I (2015) Impacts of geochemical and environmental factors on seasonal variation of heavy metals in a coastal Lagoon Yucatan, Mexico. Bull Environ Contam Toxicol 94:58–65PubMedCrossRefGoogle Scholar
  10. Arduini I, Godbold DL, Onnis A (1996) Cadmium and copper uptake and distribution in Mediterranean tree seedlings. Physiol Plant 97:111–117CrossRefGoogle Scholar
  11. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216CrossRefGoogle Scholar
  12. Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16CrossRefGoogle Scholar
  13. Ayyappan D, Sathiyaraj G, Ravindran KC (2016) Phytoextraction of heavy metals by Sesuvium portulacastrum l. a salt marsh halophyte from tannery effluent. Int J Phytoremediation 18(5):453–459PubMedCrossRefGoogle Scholar
  14. Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113PubMedCrossRefGoogle Scholar
  15. Banerjee S, Pramanik A, Sengupta S, Chattopadhyay D, Bhattacharyya M (2017) Distribution and source identification of heavy metal concentration in Chilika Lake, Odisha India: an assessment over salinity gradient. Curr Sci 112:87–94CrossRefGoogle Scholar
  16. Bankaji I, Sleimi N, Gomez Cadenas A, Perez Clemente RM (2016) NaCl protects against Cd and Cu-induced toxicity in the halophyte Atriplex halimus. Span J Agric Res 14:1–12CrossRefGoogle Scholar
  17. Bingham FT, Sposito G, Strong JE (1986) The effect of sulfate on the availability of cadmium. Soil Sci 141:172–177CrossRefGoogle Scholar
  18. Brady CJ, Gibson TS, Barlow EWR, Speirs J, Wyn Jones RG (1984) Salt tolerance in plants. I. Ions compatible organic solutes and the stability of plant ribosomes. Plant Cell Environ 7:571–578Google Scholar
  19. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702PubMedCrossRefGoogle Scholar
  20. Caçador I, Vale C, Catarino F (2000) Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root-sediment system of Spartina maritima and Halimione portulacoides from Tagus estuary salt marshes. Mar Environ Res 49:279–290PubMedCrossRefGoogle Scholar
  21. Cambrolle J, Redondo-Gomez S, Mateos-Naranjo E, Figueroa ME (2008) Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment. Mar Pollut Bull 56:2037–2042PubMedCrossRefGoogle Scholar
  22. Candan N, Tarhan L (2003) Relationship among chlorophyll-carotenoid content, antioxidant enzyme activities and lipid peroxidation levels by Mg2+ deficiency in the Mentha pulegium leaves. Plant Physiol Biochem 41:35–40CrossRefGoogle Scholar
  23. Carpene E, Andreani G, Isani G (2007) Metallothionein functions and structural characteristics. J Trace Elem Med Biol 21(suppl):35–39PubMedCrossRefGoogle Scholar
  24. Carvalho SM, Caçador I, Martins-Loução MA (2006) Arbuscular mycorrhizal fungi enhance root cadmium and copper accumulation in the roots of the salt marsh plant Aster tripolium L. Plant Soil 285:161–169CrossRefGoogle Scholar
  25. Castro R, Pereira S, Lima A, Corticeiro S, Valega M, Pereira E, Duarte A, Figueira E (2009) Accumulation, distribution and cellular partitioning of mercury in several halophytes of a contaminated salt marsh. Chemosphere 76:1348–1355PubMedCrossRefGoogle Scholar
  26. Chai MW, Shi FC, Li RL, Liu FC, Qiu GY, Liu LM (2013) Effect of NaCl on growth and Cd accumulation of halophyte Spartina alterniflora under CdCl2 stress. S Afr J Bot 85:63–69CrossRefGoogle Scholar
  27. Chai M, Shi F, Li R, Qiu G, Liu F, Liu L (2014) Growth and physiological responses to copper stress in a halophyte Spartina alterniflora (Poaceae). Acta Physiol Plant 793 36(3):745–754CrossRefGoogle Scholar
  28. Chandra R, Kang H (2016) Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids. Forest Sci Tech 12:55–61CrossRefGoogle Scholar
  29. Chaturvedi AK, Mishra A, Tiwari V, Jha B (2012) Cloning and transcript analysis of type 2 metallothionein gene (SbMT-2) from extreme halophyte Salicornia brachiata and its heterologous expression in E. coli. Gene 499:280–287PubMedCrossRefGoogle Scholar
  30. Chen CT, Chen TH, Lo KF, Chiu CY (2004) Effects of proline on copper transport in rice seedlings under excess copper stress. Plant Sci 166:103–111CrossRefGoogle Scholar
  31. Chen L, Long XH, Zhang ZH, Zheng XT, Rengel Z, Liu ZP (2011) Cadmium accumulation and translocation in two Jerusalem artichoke (Helianthus tuberosus L.) Cultivars. Pedosphere 21:573–580CrossRefGoogle Scholar
  32. Choudhary M, Jetley UK, Khan MA, Zutshi S, Fatma T (2007) Effect of heavy metal stress on proline, malondialdehyde and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol Environ Saf 66:204–209PubMedCrossRefGoogle Scholar
  33. Christofilopoulos S, Syranidou E, Gkavrou G, Manousaki E, Kalogerakis N (2016) The role of halophyte Juncus acutus L. in the remediation of mixed contamination in a hydroponic greenhouse experiment. J Chem Technol Biotechnol 91(6):1665–1674CrossRefGoogle Scholar
  34. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719PubMedCrossRefGoogle Scholar
  35. Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cobbett C, Goldsbrough PB (2002) Phytochelatins and metallothionein: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182PubMedCrossRefGoogle Scholar
  37. Cornic G (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture – not by affecting ATP synthesis. Trends Plant Sci 5:187–188CrossRefGoogle Scholar
  38. Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Cellular and molecular life sciences metallothionein: the multipurpose protein. Cell Mol Life Sci 59:627–647PubMedCrossRefGoogle Scholar
  39. Dazy M, Masfaraud JF, Ferard JF (2009) Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw. Chemosphere 75:297e302CrossRefGoogle Scholar
  40. De Filippis LF, Pallaghy CK (1994) Heavy metals: sources and biological effects. E. Schweizerbarts’sche, Verlagsbuchhandlung, StuttgartGoogle Scholar
  41. de Vos AC, Broekman R, de Almeida Guerra CC, van Rijsselberghe M, Rozema J (2013) Developing and testing new halophyte crops: a case study of salt tolerance of two species of the Brassicaceae, Diplotaxis tenuifolia and Cochlearia officinalis. Environ Exp Bot 92:154–164CrossRefGoogle Scholar
  42. Defew LH, Mair JM, Guzman HM (2005) An assessment of metal contamination in mangrove sediments and leaves from Punta Mala Bay, Pacific Panama. Mar Pollut Bull 50:547–552PubMedCrossRefGoogle Scholar
  43. Demidchik V (2014) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. J Exp Bot 109:212–228CrossRefGoogle Scholar
  44. Demidchik V, Cuin TA, Svistunenko D et al (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123:1468–1479PubMedPubMedCentralCrossRefGoogle Scholar
  45. Eid MA (2011) Halophytic plants for phytoremediation of heavy metals contaminated soil. J Am Sci 7:377–382Google Scholar
  46. Eid MA, Eisa SS (2010) The use of some halophytic plants to reduce Zn, Cu and Ni in soil. Aust J Basic Appl Sci 4:1590–1596Google Scholar
  47. Eissa MA (2015) Impact of compost on metals phytostabilization potential of two halophytes species. Int J Phytoremediation 17:662–668PubMedCrossRefGoogle Scholar
  48. El-said GF, Draz SEO, El-Sadaawy MM, Moneer AA (2014) Sedimentology, geochemistry, pollution status and ecological risk assessment of some heavy metals in surficial sediments of an Egyptian lagoon connecting to the Mediterranean Sea. J Environ Sci Health A 49:1029–1044CrossRefGoogle Scholar
  49. European Environment Agency (2007) Progress in management of contaminated sites (CSI015). EEA, CopenhagenGoogle Scholar
  50. Fargasova A (1998) Accumulation and toxin effects of Cu2+, Cu+, Mn2+, VO4 3−, Ni2+and MoO4 2− and their associations: influence on respiratory rate and chlorophyll a con-tent of the green alga Scenedesmus quadricauda. J Trace Microprobe Techn 16:481–490Google Scholar
  51. Fitzgerald EJ, Caffrey JM, Nesaratnam ST, McLoughlin P (2003) Copper and lead concentrations in salt marsh plants on the suir Estuary. Irel Environ Pollut 123:67–74CrossRefGoogle Scholar
  52. Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89:183–189PubMedPubMedCentralCrossRefGoogle Scholar
  53. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963PubMedCrossRefGoogle Scholar
  54. Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121CrossRefGoogle Scholar
  55. Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612CrossRefGoogle Scholar
  56. Freeman JL, Salt DE (2007) The metal tolerance profile of Thlaspi goes in genes is mimicked in Arabidopsis thaliana heterologously expressing serine acetyl-transferase. BMC Plant Biol 7:63PubMedPubMedCentralCrossRefGoogle Scholar
  57. Garcia-Miragaya J, Page AL (1976) Influence of ionic strength and inorganic complex formation on the sorption of trace amounts of Cd by Montmorillonite. Soil Sci Soc Am J 40:658–663CrossRefGoogle Scholar
  58. Garnier L, Simon-Plas F, Thuleau P, Agnel JP, Blein JP, Ranjeva R, Montillet JL (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ 29:1956–1969PubMedCrossRefGoogle Scholar
  59. Ghnaya T, Nouairi I, Slama I et al (2005) Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. J Plant Physiol 162:1133–1140PubMedCrossRefGoogle Scholar
  60. Ghnaya T, Slama I, Messedi D, Grignon C, Ghorbel MH, Abdelly C (2007) Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum: consequences on growth. Chemosphere 67:72–79PubMedCrossRefGoogle Scholar
  61. Ghosh R, Xalxo R, Ghosh M (2013) Estimation of heavy metal in vegetables from different market sites of tribal based Ranchi city through ICP-OES and to assess health risk. Curr World Environ 8:435–444CrossRefGoogle Scholar
  62. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930CrossRefPubMedGoogle Scholar
  63. Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255CrossRefGoogle Scholar
  64. Gonzalez-Mendoza D, Moreno AQ, Zapata-Perez O (2007) Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper. Aquat Toxicol 83:306–314PubMedCrossRefGoogle Scholar
  65. Gouia H, Suzuki A, Brulfert J, Ghorbal MH (2003) Effects of cadmium on the co-ordination of nitrogen and carbon metabolism in bean seedlings. J Plant Physiol 160:367–376PubMedCrossRefGoogle Scholar
  66. Grateao PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494CrossRefGoogle Scholar
  67. Gupta A, Rai DK, Pandey RS, Sharma B (2009) Analysis of some heavy metals in the riverine water, sediments and fish from Ganges at Allahabad. Environ Monit Assess 157:449–458PubMedCrossRefGoogle Scholar
  68. Hagemeyer J, Waisel Y (1988) Excretion of ions (Cd2+, Li+, Na+ and Cl) by Tamarix aphylla. Physiol Plant 73(4):541–546CrossRefGoogle Scholar
  69. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11PubMedCrossRefGoogle Scholar
  70. Han RM, Lefèvre I, Ruan CJ, Beukelaers N, Qin P, Lutts S (2012a) Effects of salinity on the response of the wetland halophyte Kosteletzkya virginica (L.) Presl. to copper toxicity. Water Air Soil Pollut 223:1137–1150CrossRefGoogle Scholar
  71. Han RM, Lefèvre I, Ruan CJ, Qin P, Lutts S (2012b) NaCl differently interferes with Cd and Zn toxicities in the wetland halophyte species Kosteletzkya virginica (L.) Presl. Plant Growth Regul 68:97–109CrossRefGoogle Scholar
  72. Han RM, Lefèvre I, Albacete A et al (2013) Antioxidant enzyme activities and hormonal status in response to Cd stress in wetland halophyte Kosteletzkya virginica under saline conditions. Physiol Plant 147:352–368PubMedCrossRefGoogle Scholar
  73. Haoliang L, Yan Chongling Y, Jingchun L (2007) Low-molecular-weight organic acids exuded by Mangrove (Kandelia candel (L.) Druce) roots and their effect on cadmium species change in the rhizosphere. Environ Exp Bot 61:159–166CrossRefGoogle Scholar
  74. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499CrossRefGoogle Scholar
  75. Hasna E, Karim BH, Maria FA, Maren M, Chedly A, Sergi MB (2013) Drought and cadmium may be as effective as salinity in conferring subsequent salt stress tolerance in Cakile maritima. Planta 237:1311–1323CrossRefGoogle Scholar
  76. Hawkes SJ (1997) What is a “heavy metal”. J Chem Educ 74(11):1374.  https://doi.org/10.1021/ed074p1374 CrossRefGoogle Scholar
  77. Heiss S, Wachter A, Bogs J, Cobbett C, Rausch T (2003) Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. J Exp Bot 54:1833–1839PubMedCrossRefGoogle Scholar
  78. Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of 1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136PubMedPubMedCentralCrossRefGoogle Scholar
  79. Hossain Z, Nouri MZ, Komatsu S (2012) Plant cell organelle proteomics in response to abiotic stress. J Proteome Res 11:37–48PubMedCrossRefGoogle Scholar
  80. Huang GY, Wang YS (2009) Expression analysis of type 2 metallothionein gene in mangrove species (Bruguiera gymnorrhiza) under heavy metal stress. Chemosphere 77:1026–1029PubMedCrossRefGoogle Scholar
  81. Jha B, Sharma A, Mishra A (2011) Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Mol Biol Rep 38:4823–4832PubMedCrossRefGoogle Scholar
  82. Jiang LY, Yang XE, Chen JM (2008) Copper tolerance and accumulation of Elsholtzia splendens Nakai in a pot environment. J Plant Nutr 31(8):1382–1392CrossRefGoogle Scholar
  83. Jisha KC, Puthur JT (2014) Halopriming of seeds imparts tolerance to NaCl and PEG induced stress in Vigna radiata (L.) wilczek varieties. Physiol Mol Biol Plants 20:303–312PubMedPubMedCentralCrossRefGoogle Scholar
  84. Kabata Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton, p 331Google Scholar
  85. Kadukova J, Kalogerakis N (2007) Lead accumulation from non-saline and saline environment by Tamarix smyrnensis Bunge. Eur J Soil Biol 43:216–223CrossRefGoogle Scholar
  86. Kadukova J, Manousaki E, Kalogerakis N (2008) Pb and Cd accumulation and phytoexcretion by salt cedar (Tamarix smyrnensis Bunge). Int J Phytoremediation 10:31–46PubMedCrossRefGoogle Scholar
  87. Kamala-Kannan S et al (2008) Assessment of heavy metals (Cd, Cr and Pb) in water, sediment and seaweed (Ulva lactuca) in the Pulicat Lake, South East India. Chemosphere 71:1233–1240PubMedCrossRefGoogle Scholar
  88. Katschnig D, Broekman R, Rozema J (2013) Salt tolerance in the halophyte Salicornia dolichostachya Moss: growth, morphology and physiology. Environ Exp Bot 92:32–42CrossRefGoogle Scholar
  89. Khodaverdiloo H, Taghlidabad RH (2013) Phytoavailability and potential transfer of Pb from a salt-affected soil to Atriplex verucifera, Salicornia europaea and Chenopodium album. Chem Ecol 30(3):216–226CrossRefGoogle Scholar
  90. King MA, Sogbanmu TO, Doherty F, Otitoloju AA (2012) Toxicological evaluation and usefulness of lipid peroxidation as a biomarker of exposure to crude oil and petroleum products tested against African catfish (Clarias gariepinus) and Hermit crab (Clibanarius africanus). Nat Environ Pollut Technol 11:1–6Google Scholar
  91. Kumari A, Sheokand S, Swaraj K (2010) Nitric oxide induced alleviation of toxic effects of short term and long term Cd stress on growth, oxidative metabolism and Cd accumulation in Chickpea. Braz J Plant Physiol 22:271–284CrossRefGoogle Scholar
  92. Kupper H, Kochian LV (2010) Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol 185:114–129PubMedCrossRefGoogle Scholar
  93. Kupper H, Parameswaran A, Leitenmaier B, Trtilek M, Setlik I (2007) Cadmium induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol 175:655–674PubMedCrossRefGoogle Scholar
  94. Lefèvre I, Marchal G, Meerts P, Correal E, Lutts S (2009) Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environ Exp Bot 65:142–152CrossRefGoogle Scholar
  95. Lefèvre I, Marchal G, Edmond Ghanem M, Correal E, Lutts S (2010) Cadmium has contrasting effects on polyethylene glycol-sensitive and resistant cell lines in the Mediterranean halophyte species Atriplex halimus L. J Plant Physiol 167(5):365–374PubMedCrossRefGoogle Scholar
  96. Li YM, Chaney RL, Schneiter AA (1994) Effect of soil chloride level on cadmium concentration in sunflower kernels. Plant Soil 167:275–280CrossRefGoogle Scholar
  97. Li W, Khan MA, Yamaguchi S, Kamiya Y (2005) Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana. Plant Growth Regul 46:45–50CrossRefGoogle Scholar
  98. Li R, Shi F, Fukuda K (2010) Interactive effects of various salt and alkali stresses on growth, organic solutes, and cation accumulation in a halophyte Spartina alterniflora (Poaceae). Environ Exp Bot 68:66–74CrossRefGoogle Scholar
  99. Li L, Liu X, Peijnenburg JGM, Willie, Zhao J, Chen X, Yu J, Wu H (2012) Pathways of cadmium fluxes in the root of the halophyte Suaeda salsa. Ecotoxicol Environ Saf 75:1–7PubMedCrossRefGoogle Scholar
  100. Lilebo AI, Valega M, Otero M, Pardal MA, Pereira E, Duarte AC (2010) Daily and inter-tidal variations of Fe Mn and Hg in the water column of a contaminated salt marsh: halophytes effect. Estuar Coast Shelf Sci 88:91–98CrossRefGoogle Scholar
  101. Lokhande VH, Suprasanna P (2012) Prospectus of halophytes in understanding and managing abiotic stress tolerance. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. pp 29–56Google Scholar
  102. Lokhande VH, Srivastava S, Patade VY, Dwivedi S, Tripathi RD, Nikam TD, Suprasanna P (2011) Investigation of arsenic accumulation and tolerance in Sesuvium portulacastrum (L.). Chemosphere 82:529–534PubMedCrossRefGoogle Scholar
  103. Lombi E, Wenzel WW, Gobran GR, Adriano DC (2001) Dependency of phytoavailability of metals on indigenous and induced rhizosphere processes: a review. In: Gobran GR, Wenzel WW, Lombi E (eds) Trace elements in the rhizosphere. CRC Press, Boca Raton, pp 3–24Google Scholar
  104. Lutts S, Lefèvre I (2015) How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt affected areas? Ann Bot 115:509–528PubMedPubMedCentralCrossRefGoogle Scholar
  105. Lutts S, Lefèvre I, Delpérée C et al (2004) Heavy metal accumulation by the halophyte species Mediterranean saltbush. J Environ Qual 33:1271–1279PubMedCrossRefGoogle Scholar
  106. Lutts S, Hausman JF, Quinet M, Lefèvre I (2013) Polyamines and their roles in the alleviation of ion toxicities in plants. P Ahmad, MM Azooz, MNV Prasad, Ecophysiology and responses of plants under salt stress. Springer, New York. 315–353CrossRefGoogle Scholar
  107. Ma JG, Chai MW, Shi FC (2011) Effects of long-term salinity on the growth of the halophyte Spartina alterniflora Loisel. Afr J Biotechnol 10:17962–17968CrossRefGoogle Scholar
  108. Majumder AL, Sengupta S, Goswami L (2010) Osmolyte regulation in abiotic stress. In: Pareek A, Sudhir KS, Hans JB, Govindjee (eds) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, Dordrecht, pp 349–370Google Scholar
  109. Maksymiec W, Krupa Z (2006) The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environ Exp Bot 57:187–194CrossRefGoogle Scholar
  110. Manousaki E, Kalogerakis N (2009) Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Environ Sci Pollut Res 16:844–854CrossRefGoogle Scholar
  111. Manousaki E, Kalogerakis N (2011a) Halophytes – an emerging trend in phytoremediation. Int J Phytoremediation 13:959–969PubMedCrossRefGoogle Scholar
  112. Manousaki E, Kalogerakis N (2011b) Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind Eng Chem Res 50(2):656–660CrossRefGoogle Scholar
  113. Manousaki E, Kadukova J, Papadonatonakis N, Kalogerakis N (2007) Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environ Res 106:326–332PubMedCrossRefGoogle Scholar
  114. Manousaki E, Kadukova J, Papadantonakis N, Kalogerakis N (2008) Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environ Res 106:326–332PubMedCrossRefGoogle Scholar
  115. Manousaki E, Galanaki K, Papadimitriou L, Kalogerakis N (2013) Metal phytoremediation by the halophyte Limoniastrum monopetalum (L.) Boiss: two contrasting ecotypes. Int J Phytoremediation 16:755–769CrossRefGoogle Scholar
  116. Manousaki E, Galanaki K, Papadimitriou L, Kalogerakis N (2014) Metal phytoremediation by the halophyte Limoniastrum monopetalum (L.) Boiss: two contrasting ecotypes. Int J Phytoremediation 16(7–8):755–769PubMedCrossRefGoogle Scholar
  117. Marschner H, Römheld V, Horst WJ, Martin P (2007) Root induced changes in the rhizosphere: importance for the mineral nutrition of plants. J Plant Nutr Soil Sci 149:441–456Google Scholar
  118. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence a practical guide. J Exp Bot 51:659–668PubMedCrossRefGoogle Scholar
  119. Mazharia M, Homaeed M (2012) Annual halophyte Chenopidium botrys can phytoextract cadmium from contaminated soils. J Basic Appl Sci Res 2:1415–1422Google Scholar
  120. Mesnoua M, Mateos-Naranjo E, Barcia-Piedras JM, Perez-Romero JA, Lotmani B, Redondo-Gomez S (2016) Physiological and biochemical mechanisms preventing Cd-toxicity in the hyperaccumulator Atriplex halimus L. Plant Physiol Biochem 106:30–38PubMedCrossRefGoogle Scholar
  121. Mil-Homens M, Vale C, Raimundo J, Pereira P, Brito P, Caetano M (2014) Major factors influencing the elemental composition of surface estuarine sediments: the case of 15 estuaries in Portugal. Mar Pollut Bull 84:135–146PubMedCrossRefGoogle Scholar
  122. Milic D, Lukovic´ J, Ninkov J et al (2012) Heavy metal content in halophytic plants from inland and maritime saline areas. Cent Eur J Biol 7:307–317Google Scholar
  123. Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039PubMedCrossRefGoogle Scholar
  124. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410PubMedCrossRefGoogle Scholar
  125. Mnasri M, Ghabriche R, Fourati E, Zaier H, Sabally K, Barrington S, Lutts S, Abdelly C, Ghnaya T (2015) Cd and Ni transport and accumulation in the halophyte Sesuvium portulacastrum: implication of organic acids in these processes. Front Plant Sci 6:1–9CrossRefGoogle Scholar
  126. Moghaieb REA, Saneoka H, Fujita K (2004) Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants Salicornia europaea and Suaeda maritima. Plant Sci 166:1345–1349CrossRefGoogle Scholar
  127. Muhlingh KH, Lauchli A (2003) Interaction of NaCl and Cd stress on compartmentation pattern of cations, antioxidant enzymes and proteins in leaves of two wheat genotypes differing in salt tolerance. Plant Soil 253:219–231CrossRefGoogle Scholar
  128. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681PubMedCrossRefGoogle Scholar
  129. Najeeb U, Jilanic G, Alia S, Sarward M, Xua L, Zhoua W (2011) Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. J Hazard Mater 186:565–574PubMedCrossRefGoogle Scholar
  130. Nalla S, Hardaway CJ, Sneddon J (2012) Phytoextraction of selected metals by the first and second growth seasons of Spartina alterniflora. Instrum Sci Technol 40(1):17–28CrossRefGoogle Scholar
  131. Nedjimi B, Daoud Y (2009) Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora 204:316–324CrossRefGoogle Scholar
  132. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279PubMedCrossRefGoogle Scholar
  133. Nunes da Silva M, Mucha AP, Rocha AC, Silva C, Carli C, Gomes CR, Almeida CMR (2014) Evaluation of the ability of two plants for the phytoremediation of Cd in salt marshes. Estuar Coast Shelf Sci 141:78–84CrossRefGoogle Scholar
  134. Ouzounidou G, Moustakas M, Eleftheriou EP (1997) Physiological and ultrastructural effects of cadmium on wheat (Triticum aestivum L.) leaves. Arch Environ Contam Toxicol 32:154–160PubMedCrossRefGoogle Scholar
  135. Ozawa T, Miura M, Fukuda M, Kakuta S (2009) Cadmium tolerance and accumulation in a halophyte Salicornia europaea as a new candidate for phytoremediation of saline soils. Sci Rep Grad Sch Life Environ Sci Osaka Pref Univ 60:1–8Google Scholar
  136. Pal M, Horváth E, Janda T, Páldi E, Szalai G (2006) Physiological changes and defense mechanisms induced by cadmium stress in maize. J Plant Nutr Soil Sci 169:239–246CrossRefGoogle Scholar
  137. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349PubMedCrossRefGoogle Scholar
  138. Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288PubMedCrossRefGoogle Scholar
  139. Parmar P, Kumari N, Sharma V (2013) Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Bot Stud.  https://doi.org/10.1186/1999-3110-54-45 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Paul D (2017) Research on heavy metal pollution of river Ganga: a review. Ann Agrar Sci 15:278–286CrossRefGoogle Scholar
  141. Pedro CA, Santos MSS, Ferreira SMF, Goncalves SC (2013) The influence of cadmium contamination and salinity on the survival, growth and phytoremediation capacity of the saltmarsh plant Salicornia ramosissima. Mar Environ Res 92:197–205PubMedCrossRefGoogle Scholar
  142. Pohlmeier A (2004) Metal speciation, chelation and complexing ligands in plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems. Springer, New DelhiGoogle Scholar
  143. Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35:525–545CrossRefGoogle Scholar
  144. Prasad S, Mathur A, Rupaniwar DC (1989) Heavy metal distribution in the sediment and river confluence points of river Ganga in Varanasi Mirzapur region. Asian Environ 11:73–82Google Scholar
  145. Qiu RL, Zhao X, Tang YT, Yu FM, Hu PJ (2008) Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. Chemosphere 74:6–12PubMedCrossRefGoogle Scholar
  146. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181PubMedCrossRefGoogle Scholar
  147. Reboreda R, Caçador I (2008) Enzymatic activity in the rhizosphere of Spartina maritima: potential contribution for phytoremediation of metals. Mar Environ Res 65:77–84PubMedCrossRefGoogle Scholar
  148. Redondo-Gómez S (2013) Bioaccumulation of heavy metals in Spartina. Funct Plant Biol 40:913–921CrossRefGoogle Scholar
  149. Redondo-Gómez S, Mateos-Naranjo E, Andrades-Moreno L (2010) Accumulation and tolerance characteristics of cadmium in a halophytic Cd hyperaccumulator Arthrocnemum macrostachyum. J Hazard Mater 184:299–307PubMedCrossRefGoogle Scholar
  150. Remans T, Opdenakker K, Smeets K, Mathijsen D, Vangronsveld J, Cuypers A (2010) Metal-specific and NADPH oxidase dependent changes in lipoxygenase and NADPH oxidase gene expression in Arabidopsis thaliana exposed to cadmium or excess copper. Funct Plant Biol 37:532–544CrossRefGoogle Scholar
  151. Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher-plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384CrossRefGoogle Scholar
  152. Rodrigo-Moreno A, Andrés-Colás N, Poschenrieder C, Gunsé B, Peñarrubia L, Shabala S (2013) Calcium- and potassium-permeable plasma membrane transporters are activated by copper in Arabidopsis root tips: linking copper transport with cytosolic hydroxyl radical production. Plant Cell Environ 36:844–855PubMedCrossRefGoogle Scholar
  153. Rodrıguez-Serrano M, Romero-Puertas MC, Zabalza A et al (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544PubMedCrossRefGoogle Scholar
  154. Rouhier N, Lemaire SD, Jacquot JP (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol 59:143–166PubMedCrossRefGoogle Scholar
  155. Rui-Ming H, Lef’ever I, Albacete A, Perez-Alfocea F, Barba-Espin G, Diaz- Vivancos P, Quinet M, Cheng-Jiang R, Jose AH, Cantero-Navarro E, Lutts S (2013) Antioxidant enzyme activities and hormonal status in response to Cd stress in the wetland halophyte Kosteletzkya virginica under saline conditions. Physiol Plant 147:352–368CrossRefGoogle Scholar
  156. Sai Kachout S, Ben Mansoura A, Leclerc JC, Mechergui R, Rejeb MN, Ouerghi Z (2009) Effects of heavy metals on antioxidant activities of Atriplex hortensis and A rosea. Electron J Environ Agric Food Chem 9:444–457Google Scholar
  157. Sai Kachout SS, Ben Mansoura A, Mechergui R, Leclerc JC, Rejeb MN, Ouerghi Z (2012) Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil. J Sci Food Agric 92:336–342CrossRefGoogle Scholar
  158. Sai Kachout S, Ben Mansoura A, Ennajah A, Leclerc JC, Ouerghi Z, Karray Bouraoui N (2015) Effects of metal toxicity on growth and pigment contents of annual Halophyte (A. hortensis and A. rosea). Int J Environ Res 9(2):613–620Google Scholar
  159. Sandalio L, Dalurzo HC, Gómez M, Romero Puertas M, del Río LA (2001) Cadmium induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126PubMedCrossRefGoogle Scholar
  160. Sanitá di Tpooi L, Gabbrielli R (1999) Response to Cd in higher plants. Environ Exp Bot 41:105–130CrossRefGoogle Scholar
  161. Santos MSS, Pedro CA, Goncalves SC, Ferreira SMF (2015) Phytoremediation of cadmium by the facultative halophyte plant Bolboschoenus maritimus (L.) Palla, at different salinities. Environ Sci Pollut Res 22(20):15598–15609CrossRefGoogle Scholar
  162. Santos E, Abreu M, Peres S, Magalhaes M, Leitao S, Pereira A, Cerejeira MJ (2017) Potential of Tamarix africana and other halophyte species for phytostabilisation of contaminated salt marsh soils. J Soils Sediments 17:1459–1473CrossRefGoogle Scholar
  163. Semane B, Cuypers A, Smeets K, Belleghem VF (2007) Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system. Physiol Plant 129:519–528CrossRefGoogle Scholar
  164. Sengar RS, Gupta S, Gautam M, Sharma A, Sengar K (2008) Occurrence, uptake, accumulation and physiological responses of nickel in plants and its effects on environment. Res J Phytochem 2:4–60CrossRefGoogle Scholar
  165. Sghaier DB, Duarte B, Bankaji I, Caçador I, Sleimi N (2015) Growth, chlorophyll fluorescence and mineral nutrition in the halophyte Tamarix gallica cultivated in combined stress conditions: arsenic and NaCl. J Photochem Photobiol B: Biol 149:204–214CrossRefGoogle Scholar
  166. Shabala S (2012) Plant stress physiology. Cabi, Cambridge, MACrossRefGoogle Scholar
  167. Shackira AM, Puthur JT (2013) An assessment of heavy metal contamination in soil sediments, leaves and roots of Acanthus ilicifolius L. Proceedings of 23rd Swadeshi Science Congress. pp 689–692Google Scholar
  168. Shackira M, Puthur JT (2017) Enhanced phytostabilization of cadmium by a halophyte—Acanthus ilicifolius L. Int J Phytoremediation 19(4):319–326PubMedCrossRefGoogle Scholar
  169. Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726PubMedCrossRefGoogle Scholar
  170. Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50PubMedCrossRefGoogle Scholar
  171. Sharma GI, Agarwal PK, Jha B (2010) Accumulation of heavy metals and its biochemical responses in Salicornia brachiata, an extreme halophyte. Mar Biol Res 6:511–518CrossRefGoogle Scholar
  172. Shevyakova NI, Netronina IA, Aronova EE, Kuznetsov VIV (2003) Compartmentation of cadmium and iron in Mesembryanthemum crystallinum plants during the adaptation to cadmium stress. Russ J Plant Physiol 179:57–64Google Scholar
  173. Shi J, Li LQ, Pan GX (2009) Variation of grain Cd and Zn concentrations of 110 hybrid rice cultivars grown in a low-Cd paddy soil. J Environ Sci 21:168–172CrossRefGoogle Scholar
  174. Singh PK, Tewari RK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24:107–112PubMedGoogle Scholar
  175. Singh RP, Dayal G, Taneja A, Kapoor CK (1993) Enrichment of Zn, Cd, Pb, and Cu, in the surface micro layer of river Ganga along Kanpur city. Pollut Res 12:161–165Google Scholar
  176. Sousa AI, Caçador I, Lillebø AI, Pardal MA (2008) Heavy metal accumulation in Halimione portulacoides: intra- and extra-cellular metal binding sites. Chemosphere 710:850–857CrossRefGoogle Scholar
  177. Srinivasa Reddy M, Basha S, Sravan Kumar VG, Joshi HV, Ghosh PK (2003) Quantification and classification of ship scraping waste at Alang–Sosiya, India. Mar Pollut Bull 46:1609–1614PubMedCrossRefGoogle Scholar
  178. Stocker R, Keaney JF (2004) Role of oxidative modifications in atherosclerosis. Physiol Rev 84:1381–1478PubMedCrossRefGoogle Scholar
  179. Subbarao GV, Levine LH, Wheeler RM, Stutte GW (2001) Glycine betaine accumulation accumulation: its role in stress resistance in crop plants. In: Perssarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker, New York, pp 881–907Google Scholar
  180. Sun Z, Mou X, Sun W (2016) Decomposition and heavy metal variations of the typical halophyte litters in coastal marshes of the Yellow River estuary, China. Chemosphere 147:163–172PubMedCrossRefGoogle Scholar
  181. Syakti AD et al (2015) Heavy metal concentrations in natural and human-impacted sediments of Segara Anakan Lagoon, Indonesia. Environ Monit Assess 187:4079.  https://doi.org/10.1007/s10661-014-4079-9 CrossRefPubMedGoogle Scholar
  182. Szabados L, Savour A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97PubMedCrossRefGoogle Scholar
  183. Taamalli M, Ghabriche R, Amari T, Mnasri M, Zolla L, Lutts S, Abdely C, Ghnaya T (2014) Comparative study of Cd tolerance and accumulation potential between Cakile maritima L.(halophyte) and Brassica juncea L. Ecol Eng 71:623–627CrossRefGoogle Scholar
  184. Tamas L, Dudikova J, Durcekova K, Haluskova L, Huttova J, Mistrik I (2009) Effect of cadmium and temperature on the lipoxygenase activity in barley root tip. Protoplasma 235:7–25CrossRefGoogle Scholar
  185. Tao YM, Chen YZ, Tan T, Liu XC, Yang DL, Liang SC (2012) Comparison of antioxidant responses to cadmium and lead in Bruguiera gymnorrhiza seedlings. Biol Plant 56:149–152CrossRefGoogle Scholar
  186. Tewari A, Joshi HV, Trivedi RH, Srvankumar VG, Raghunathan C, Khambhati Y, Kotiwar OS, Mandal SK (2001) Studies on the effect of ship scraping industry and its associated waste on the biomass production and biodiversity of biota in in-situ condition at Alang. Mar Pollut Bull 42:462–469PubMedCrossRefGoogle Scholar
  187. Thomas JC, Malick FK, Endreszl C, Davies EC, Murray KS (1998) Distinct response to copper stress in the halophyte Mesembryanthemum crystallinum. Physiol Plant 102:310–317CrossRefGoogle Scholar
  188. Vahedi A (2013) The absorption and metabolism of heavy metals and mineral matters in the halophyte plant Artemisia aucheri. Int J Biol 5:63–70Google Scholar
  189. Van Oosten MJ, Maggio A (2015) Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environ Exp Bot 111:135–146CrossRefGoogle Scholar
  190. Vromman D, Flores-Bavestrello A, Slejkovec Z et al (2011) Arsenic accumulation and distribution in relation to young seedling growth in Atriplex atacamensis Phil. Sci Total Environ 412(413):286–295PubMedCrossRefGoogle Scholar
  191. Wali M, Ben Rjab K, Gunse B et al (2014) How does NaCl improve tolerance to cadmium in the halophyte Sesuvium portulacastrum? Chemosphere 117:243–250CrossRefGoogle Scholar
  192. Walker DJ, Lutts S, Sanchez-Garcıa M, Correal E (2014) Atriplex halimus: its biology and uses. J Arid Environ 100(101):111–121CrossRefGoogle Scholar
  193. Wang H, Zhong G (2011) Effect of organic ligands on accumulation of copper in hyperaccumulator and nonaccumulator Commelina communis. Biol Trace Elem Res 143(1):489–499PubMedCrossRefGoogle Scholar
  194. Wang F, Zeng B, Sun Z, Zhu C (2009) Relationship between proline and Hg2 +-induced oxidative stress in a tolerant rice mutant. Arch Environ Contam Toxicol 56:723–731PubMedCrossRefGoogle Scholar
  195. Wang D, Wang H, Han B et al (2012) Sodium instead of potassium and chloride is an important macronutrient to improve leaf succulence and shoot development for halophyte Sesuvium portulacastrum. Plant Physiol Biochem 51:53–62PubMedCrossRefGoogle Scholar
  196. Wang HL, Tian CY, Jiang L, Wang L (2014) Remediation of heavy metals contaminated saline soils: a halophyte choice? Environ Sci Technol 48:21–22PubMedCrossRefGoogle Scholar
  197. Watanabe T, Osaki M (2002) Mechanism of adaptation to high aluminium condition in native plant species growing in acid soils: a review. Commun Soil Sci Plant Anal 33:1247–1260CrossRefGoogle Scholar
  198. Weber H, Chetelat A, Reymond P, Farmer EE (2004) Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde. Plant J 37:877–888PubMedCrossRefGoogle Scholar
  199. Wei ZW, Wong JJ, Chen D (2003) Speciation of heavy metal binding non protein thiols in Agropyronelongaturn by size-exclusion HPLC-ICP-MS. Microchem J 74:207–213CrossRefGoogle Scholar
  200. Weis J, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 169:737–745Google Scholar
  201. Wong SC, Li XD, Zhang G, Qi SH, Min YH (2002) Heavy metals in agricultural soils of the Pearl River Delta, South China. Environ Pollut 119:33–44PubMedCrossRefGoogle Scholar
  202. Wu H, Liu X, Zhao J, Yu J (2013) Regulation of metabolites, gene expression, and antioxidant enzymes to environmentally relevant lead and zinc in the halophyte Suaeda salsa. J Plant Growth Regul 32(2):353–361CrossRefGoogle Scholar
  203. Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550PubMedPubMedCentralCrossRefGoogle Scholar
  204. Xu J, Yin HX, Liu X, Li X (2010) Salt affects plants Cd-stress responses by modulating growth and Cd accumulation. Planta 231(2):449–459PubMedCrossRefGoogle Scholar
  205. Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179CrossRefGoogle Scholar
  206. Yadav G, Srivastava PK, Singh VP, Prasad SM (2014) Light intensity alters the extent of arsenic toxicity in Helianthus annuus L. seedlings. Biol Trace Elem Res 158:410–421PubMedCrossRefGoogle Scholar
  207. Ying RR, Qiu RL, Tang YT, Hu PJ, Chen QH, Shi HR, TH Morel JL (2010) Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata. J Plant Physiol 167:81–87PubMedCrossRefGoogle Scholar
  208. Zachmann DW, Mohanti M, Treutler HC, Scharf B (2009) Assessment of element distribution and heavy metal contamination in Chilika Lake sediments (India). Lakes Reserv Res Manag 14:105–125CrossRefGoogle Scholar
  209. Zaier H, Ghnaya T, Lakhdar A et al (2010) Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: tolerance and accumulation. J Hazard Mat 183:609–615CrossRefGoogle Scholar
  210. Zeng FX, Mab LQ, Qiua R, Tanga Y (2009) Responses of non-protein thiols to Cd exposure in Cd hyperaccumulator Arabis paniculata. Environ Exp Bot 66:242–248CrossRefGoogle Scholar
  211. Zhang F, Wang Y, Zhi Ping L, Jun De D (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67:44–50PubMedCrossRefGoogle Scholar
  212. Zhang JE, Liu JL, Zhao BL (2011) Physiological responses of mangrove Sonneratia apetala buch-ham plant to wastewater nutrients and heavy metals. Int J Phytoremediation 13:456–464PubMedCrossRefGoogle Scholar
  213. Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzyme activity in leaves of salt-stresses cucumber (Cucumis sativus L.). Plant Sci 167:527–533CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Anita Kumari
    • 1
  • Sunita Sheokand
    • 2
  • Pooja
    • 3
  • Ashwani Kumar
    • 4
  • Anita Mann
    • 4
  • Neeraj Kumar
    • 1
  • Sarita Devi
    • 1
  • Babita Rani
    • 1
  • Arvind Kumar
    • 4
  • B. L. Meena
    • 4
  1. 1.Chaudhary Charan Singh Haryana Agricultural UniversityHisarIndia
  2. 2.Department of Botany and Plant PhysiologyCCS Haryana Agricultural UniversityHisarIndia
  3. 3.Department of BotanyMaharishi Dayanand UniversityRohtakIndia
  4. 4.ICAR – Central Soil Salinity Research InstituteKarnalIndia

Personalised recommendations