Halophyte Species as a Source of Secondary Metabolites with Antioxidant Activity

  • Milan StankovićEmail author
  • Dragana Jakovljević
  • Marija Stojadinov
  • Zora Dajić Stevanović


As naturally salt-tolerant plants, halophytes can grow in a variety of saline habitats due to the development of special adaptations, particularly secondary metabolites with antioxidant properties. Since, in order to overcome harsh environmental conditions, halophytes have the ability to produce phenolic molecules with powerful biological capacities, this interesting ecological group of plants gets more attention in recent years because of a rapid increase in demand for natural bioactive substances. Having in mind that specific conditions of saline habitats cause specific responses of biochemical pathways of plant metabolites, which is related to their biological activities, the developmental stage and yield of individual plant species together with environmental factors must be considered in further studies. In this paper, halophyte secondary metabolites with antioxidant properties were reviewed in terms of their contributions to ecophysiological adaptations. Additionally, a complete experimental screening – from plant sampling through the methodological procedure to the presentation of the obtained results – was displayed in order to enable the selection of appropriate screening method together with the proper methods of extractions and applications of obtained results.


Salt-tolerant plants Halophytes Phenolic acids Flavonoids Antioxidant activity Screening Extraction 


  1. Al-Jaber NAA, Mujahid TG, Al-Hazmi HMG (1991) Flavonoids from Atriplex farinose. J King Saud Univ 3(2):163–167Google Scholar
  2. Alonso-Amelot EM, Oliveros A, Calcagno-Pisarelli PM (2004) Phenolics and condensed tannins in relation to altitude in neotropical Pteridium spp. A field study in the Venezuelan Andes. Biochem Syst Ecol 32:969–981CrossRefGoogle Scholar
  3. Ascensao AR, Dubery IA (2003) Soluble and wall-bound phenolics and phenolic polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum f. sp. cubense. Phytochemistry 63:679–686PubMedCrossRefGoogle Scholar
  4. Benhammou N, Bekkara FA, Kadifkova-Panovska T (2009) Antioxidant activity of methanolic extracts and some bioactive compounds of Atriplex halimus. C R Chim 12:1259–1266CrossRefGoogle Scholar
  5. Boskou D (2006) Sources of natural phenolic antioxidants. Trends Food Sci Technol 17:505–512CrossRefGoogle Scholar
  6. Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851CrossRefGoogle Scholar
  7. Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52:98–111PubMedCrossRefGoogle Scholar
  8. Bunzel M, Ralph J, Steinhart H (2004) Phenolic compounds as cross-links of plant derived polysaccharides. Czech J Food Sci 22:64–67CrossRefGoogle Scholar
  9. Crozier A, Clifford NM, Ashihara H (2006) Plant secondary metabolites: occurrence, structure, and role in the human diet. Blackwell Publishing, OxfordCrossRefGoogle Scholar
  10. Cushine TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356CrossRefGoogle Scholar
  11. Dajic Z (2006) Salt stress e salinity and tolerance mechanisms in plants. In: Madhava Rao KV, Raghavendra AS, Reddy KJ (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, pp 41–99CrossRefGoogle Scholar
  12. Duangmano S, Dakeng S, Jiratchariyakul W, Suksamrarn A, Smith DR, Patmasiriwat P (2010) Antiproliferative effects of cucurbitacin B in breast cancer cells: down-regulation of the c-Myc/hTERT/telomerase pathway and obstruction of the cell cycle. Int J Mol Sci 11:5323–5338PubMedPubMedCentralCrossRefGoogle Scholar
  13. Faggio C, Fazio F, Marafioti S, Arfuso F, Piccione G (2015a) Oral administration of gum arabic: effects on haematological parameters and oxidative stress markers in Mugil cephalus. Iran J Fish Sci 14:60–72Google Scholar
  14. Faggio C, Morabito M, Minicante SA, Piano GL, Pagano M, Genovese G (2015b) Potential use of polysaccharides from the brown alga Undaria pinnatifida as anticoagulants. Braz Arch Biol Technol 58:798–804CrossRefGoogle Scholar
  15. Faggio C, Pagano M, Dottore A, Genovese G, Morabito M (2016) Evaluation of anticoagulant activity of two algal polysaccharides. Nat Prod Res 30:1934–1937PubMedCrossRefGoogle Scholar
  16. Falleh H, Ksouri R, Medini F, Guyot S, Abdelly C, Magné C (2011) Antioxidant activity and phenolic composition of the medicinal and edible halophyte Mesembryanthemum edule L. Ind Crop Prod 34(1):1066–1071CrossRefGoogle Scholar
  17. Falleh H, Ksouri R, Boulaaba M, Guyot S, Abdelly C, Magné C (2012) Phenolic nature, occurrence and polymerization degree as marker of environmental adaptation in the edible halophyte Mesembryanthemum edule. South Afr J Bot 79:117–124CrossRefGoogle Scholar
  18. Fraga GC (ed) (2010) Plant phenolics and human health: biochemistry, nutrition, and pharmacology. Wiley, New JerseyGoogle Scholar
  19. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gorshkova TA, Salnikov VV, Pogodina NM, Chemikosova SB, Yablokova EV, Ulanov AV, Ageeva MV, Van Dam JEG, Lazovaya VV (2000) Composition and distribution of cell wall phenolic compounds in Flax (Linum usitatissimum L.) stem tissues. Ann Bot 85:477–486CrossRefGoogle Scholar
  21. Gourine N, Bombarda MI, Nadjemi B, Stocker P, Gaydou EM (2010) Antioxidant activities and chemical composition of essential oil of Pistacia atlantica from Algeria. Ind Crop Prod 31:203–208CrossRefGoogle Scholar
  22. Hajhashemi V, Vaseghi G, Pourfarzam M, Abdollahi A (2010) Are antioxidants helpful for disease prevention? Res Pharm Sci 5:1–8PubMedPubMedCentralGoogle Scholar
  23. Hajlaoui H, Trabelsi N, Noumi E, Snoussi M, Fallah H, Ksouri R, Bakhrouf A (2009) Biological activities of the essential oils and methanol extract of tow cultivated mint species (Mentha longifolia and Mentha pulegium) used in the Tunisian folkloric medicine. World J Microbiol Biotechnol 25(12):2227–2238CrossRefGoogle Scholar
  24. Halliwell B, Rafter J, Jenner A (2005) Health promotion by flavonoids, tocopherols, tocotrienols, and other phenolics: direct or indirect effects? Antioxidant or not? Am J Clin Nutr 81:268S–276SPubMedCrossRefGoogle Scholar
  25. Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad P, Azooz MM, MNV P (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 25–87CrossRefGoogle Scholar
  26. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499CrossRefPubMedGoogle Scholar
  27. Ivanescu B, Vlase L, Corciova A, Lazar MI (2010) HPLC-DAD-MS study of polyphenols from Artemisia absinthium, A. annua and A. vulgaris. Chem Nat Compd 46:468–470CrossRefGoogle Scholar
  28. Jakovljević DZ, Topuzović MD, Stanković MS, Bojović BM (2017) Changes in antioxidant enzyme activity in response to salinity-induced oxidative stress during early growth of sweet basil. Hortic Environ Biotechnol 58(3):240–246CrossRefGoogle Scholar
  29. Jallali I, Zaouali Y, Missaoui I, Smeoui A, Abdelly C, Ksouri R (2014) Variability of antioxidant and antibacterial effects of essential oils and acetonic extracts of two edible halophytes: Crithmum maritimum L. and Inula crithmoides L. Food Chem 15(145):1031–1038CrossRefGoogle Scholar
  30. Jdey A, Falleh H, Jannet SB, Hammi KM, Dauvergne X, Ksouri R, Magné C (2017) Phytochemical investigation and antioxidant, antibacterial and anti-tyrosinase performances of six medicinal halophytes. S Afr J Bot 112:508–514CrossRefGoogle Scholar
  31. Jennings BH, Akoh CC (2009) Effectiveness of natural versus synthetic antioxidants in a rice bran oil-based structured lipid. Food Chem 114:1456–1461CrossRefGoogle Scholar
  32. Kang WY, Li YY, Gu XZ, Xu QT, Huang X (2011) Antioxidant activities, a-glucosidase inhibitory effect in vitro and antihyperglycemic of Trapa acornis shell in alloxan-induced diabetic rats. J Med Plant Res 5(31):6805–6812Google Scholar
  33. Khantamat MSO, Chaiwangyen MSW, Porn-ngarm L (2004) Screening of flavonoids for their potential inhibitory effects on p-glycoprotein activity in human cervical carcinoma kb cells. Chiang Mai Med Bull 43(2):45–56Google Scholar
  34. Khoo BY, Chua SL, Balaram P (2010) Apoptotic effects of chrysin in human cancer cell lines. Int J Mol Sci 11:2188–2199PubMedPubMedCentralCrossRefGoogle Scholar
  35. Korkina LG (2007) Phenylpropanoids as naturally occurring antioxidants: from plant defence to human health. Cell Mol Biol 53:15–25PubMedGoogle Scholar
  36. Korulkina LM, Shul’ts EE, Zhusupova GE, Abilov ZA, Erzhanov KB, Chaudri MI (2004) Biologically active compounds from Limonium gmelinii and L. popovii I. Chem Nat Compd 40:465–471CrossRefGoogle Scholar
  37. Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol Biochem 45:244–249PubMedCrossRefGoogle Scholar
  38. Ksouri R, Megdiche W, Falleh H, Trabelsi N, Boulaaba M, Smaoui A, Abdelly C (2008) Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. C R Biol 331(11):865–873PubMedCrossRefGoogle Scholar
  39. Ksouri R, Falleh H, Megdiche W, Trabelsi N, Mhamdi B, Chaieb K, Abdelly C (2009) Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem Toxicol 47(8):2083–2091PubMedCrossRefGoogle Scholar
  40. Ksouri R, Megdiche W, Koyro HW, Abdelly C (2010) Responses of halophytes toenvironmental stresses with special emphasis to salinity. Adv Bot Res 53:117–145CrossRefGoogle Scholar
  41. Ksouri R, Ksouri WM, Jallali I, Debez A, Magné C, Hiroko I, Abdelly C (2012) Medicinal halophytes: potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit Rev Biotechnol 32:289–326PubMedCrossRefGoogle Scholar
  42. Kumarasamy Y, Byres M, Cox PJ, Jasapars M, Nahar L, Sarker SD (2007) Screening seeds of some Scottish plants for free-radical scavenging activity. Phytother Res 21:615–621PubMedCrossRefGoogle Scholar
  43. Lattanzio V, Lattanzio VMT, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem Adv Res 2006:23–67Google Scholar
  44. Lee J, Kong CS, Jung M, Wan Hong J, Young Lim S, Seo Y (2011) Antioxidant activity of the halophyte Limonium tetragonum and its major active components. Biotechnol Bioprocess Eng 16:992–999CrossRefGoogle Scholar
  45. Lopes A, Rodrigues MJ, Pereira CG, Oliveira M, Barreira L, Varela J, Trampetti F, Custódio L (2016) Natural products from extreme marine environments: searching for potential industrial uses within extremophile plants. Ind Crop Prod 94:299–307CrossRefGoogle Scholar
  46. Magalhães LM, Segundo MA, Reis S, Lima JLFC (2008) Methodological aspects about in vitro evaluation of antioxidant properties. Anal Chim Acta 613:1–19PubMedCrossRefGoogle Scholar
  47. Maistro EL, Angeli JPF, Andrade SF, Mantovani MS (2011) In vitro genotoxicity assessment of caffeic, cinnamic and ferulic acid. Genet Mol Res 10(2):1130–1140PubMedCrossRefGoogle Scholar
  48. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747PubMedCrossRefGoogle Scholar
  49. Mandal MS, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5(4):359–368PubMedPubMedCentralCrossRefGoogle Scholar
  50. Medini F, Bourgou S, Lalancette K, Snoussi M, Mkadmini K, Coté I, Abdelly C, Legault J, Ksouri R (2015) Phytochemical analysis, antioxidant, anti-inflammatory, and anticancer activities of the halophyte Limonium densiflorum extracts on human cell lines and murine macrophages. South Afr J Bot 99:158–164CrossRefGoogle Scholar
  51. Meot-Duros L, Magne C (2009) Antioxidant activity and phenol content of Crithmum maritimum L. leaves. Plant Physiol Biochem 47(1):37–41PubMedCrossRefGoogle Scholar
  52. Meot-Duros L, Le Floch G, Magne C (2008) Radical scavenging, antioxidant and antimicrobial activities of halophytic species. J Ethnopharmacol 116:258–262PubMedCrossRefGoogle Scholar
  53. Merkl R, Hradkova I, Filip V, Šmidrkal J (2010) Antimicrobial and antioxidant properties of phenolic acids alkyl esters. Czech J Food Sci 28(4):275–279CrossRefGoogle Scholar
  54. Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19(10):16240–16265PubMedPubMedCentralCrossRefGoogle Scholar
  55. Navarro JM, Flores P, Garrido C, Martinez V (2006) Changes in the contents of antioxidants compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chem 96:66–73CrossRefGoogle Scholar
  56. Oh MM, Trick HN, Rajashekar CB (2009) Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. J Plant Physiol 166:180–191PubMedCrossRefGoogle Scholar
  57. Oueslati S, Ksouri R, Falleh H, Pichette A, Abdelly C, Legault J (2012a) Phenolic content, antioxidant, anti-inflammatory and anticancer activities of the edible halophyte Suaeda fruticosa Forssk. Food Chem 132(2):943–947CrossRefGoogle Scholar
  58. Oueslati S, Trabelsi N, Boulaaba M, Legault J, Abdelly C, Ksouri R (2012b) Evaluation of antioxidant activities of the edible and medicinal Suaeda species and related phenolic compounds. Ind Crop Prod 36(1):513–518CrossRefGoogle Scholar
  59. Pereira CG, Barreira L, da Rosa Neng N, Nogueira JMF, Marques C, Santos TF, Varela J, Custódio L (2017a) Searching for new sources of innovative products for the food industry within halophyte aromatic plants: In vitro antioxidant activity and phenolic and mineral contents of infusions and decoctions of Crithmum maritimum L. Food Chem Toxicol 107:581–589PubMedCrossRefGoogle Scholar
  60. Pereira CG, Custódioa L, Rodriguesa MJ, Nengb NR, Nogueirab JMF, Carliera J, Costaa MC, Varelaa J Barreiraa L (2017b) Profiling of antioxidant potential and phytoconstituents of Plantago coronopus. Braz J Biol 77(3):632–641PubMedCrossRefGoogle Scholar
  61. Povichit N, Phrutivorapongkul A, Suttajit M, Chaiyasut CC, Leelapornpisid P (2010) Phenolic content and in vitro inhibitory effects on oxidation and protein glycation of some Thai medicinal plant. Pak J Pharm Sci 23(4):403–408PubMedGoogle Scholar
  62. Qasim M, Abideen Z, Adnan MY, Gulzar S, Gul B, Rasheed M, Khan MA (2017) Antioxidant properties, phenolic composition, bioactive compounds and nutritive value of medicinal halophytes commonly used as herbal teas. South Afr J Bot 110:240–250CrossRefGoogle Scholar
  63. Quettier DC, Gressier B, Vasseur J, Dine T, Brunet C, Luyckx M, Cazin M, Cazin JC, Bailleul F, Trotin F (2000) Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J Ethnopharmacol 72:35–42CrossRefGoogle Scholar
  64. Quideau S, Deffieux D, Douat-Casassus C, Pouysegu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed Eng 50:586–621CrossRefGoogle Scholar
  65. Rechner AR, Kuhnle P, Bremner GP, Hubbard KP, Moore GCA, Rice-Evans CA (2002) The metabolic fate of dietary polyphenols in humans. Free Radic Biol Med 33:220–235PubMedCrossRefGoogle Scholar
  66. Ren W, Qiao Z, Wang H, Zhu L, Zhang L (2003) Flavonoids: promising anticancer agents. Med Res Rev 23(4):519–534PubMedCrossRefGoogle Scholar
  67. Rigano MM, Raiola A, Docimo T, Ruggieri V, Calafiore R, Vitaglione P, Ferracane R, Frusciante L, Barone A (2016) Metabolic and molecular changes of the phenylpropanoid pathway in tomato (Solanum lycopersicum) lines carrying different Solanum pennellii wild chromosomal regions. Front Plant Sci.
  68. Robbins RJ (2003) Phenolic acids in foods: an overview of analytical methodology. Agric Food Chem 51(10):2866–2887CrossRefGoogle Scholar
  69. Rodrigues MJ, Gangadhar KN, Vizetto-Duarte C, Wubshet SG, Nyberg NT, Barreira L, Varela J, Custodio L (2014) Maritime halophyte species from southern Portugal as sources of bioactive molecules. Mar Drugs 12(4):2228–2244PubMedPubMedCentralCrossRefGoogle Scholar
  70. Rodrigues MJ, Soszynski A, Martins A, Rauter AP, Neng NR, Nogueira JMF, Varela J, Barreira L, Custódio L (2015) Unravelling the antioxidant potential and the phenolic composition of different anatomical organs of the marine halophyte Limonium algarvense. Ind Crop Prod 77:315–322CrossRefGoogle Scholar
  71. Rodrigues MJ, Neves V, Martins A, Rauter AP, Neng NR, Nogueira JMF, Varela J, Barreira L, Custódio L (2016) In vitro antioxidant and anti-inflammatory properties of Limonium algarvense flowers’ infusions and decoctions: a comparison with green tea (Camellia sinensis). Food Chem 200:322–329PubMedCrossRefGoogle Scholar
  72. Rohma A, Riyanto S, Yuniarti N, Saputra WR, Utami R, Mulatsih W (2010) Antioxidant activity, total phenolic, and total flavonoid of extracts and fractions of red fruit (Pandanus conoideus Lam). Int Food Res J 17:97–106Google Scholar
  73. Sanderson SC, Ge-ling C, McArthur ED, Stutz HC (1988) Evolutionary loss of flavonoids and other chemical characters in the Chenopodiaceae. Biochem Syst Ecol 16:143–149CrossRefGoogle Scholar
  74. Sarikurkcu C, Eryigit F, Cengiz M, Tepe B, Cakir A, Mete E (2012) Screening of the antioxidant activity of the essential oil and methanol extract of Mentha pulegium L. from Turkey. An Int J Rapid Commun 45(5):352–358Google Scholar
  75. Sasaki YF, Kawaguchi S, Kamaya A, Ohshita M, Kabasawa K, Iwama K, Taniguchi K, Tsuda S (2002) The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutat Res Genet Toxicol Environ Mutagen 519:103–119CrossRefGoogle Scholar
  76. Sekmen AH, Turkan I, Tanyolac ZO, Ozfidan C, Dinc A (2012) Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata bark. Environ Exp Bot 77:63–76CrossRefGoogle Scholar
  77. Selmar D, Kleinwachter M (2013) Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Ind Crop Prod 42:558–566CrossRefGoogle Scholar
  78. Serkerov SV, Aleskerova AN (1984) Sesquiterpene lactones of Artemisia santonica. Chem Nat Compd 20:391–392CrossRefGoogle Scholar
  79. Shoham A, Hadziahmetovic M, Dunaief JL, Mydlarski MB, Schipper HM (2008) Oxidative stress in diseases of the human cornea. Free Radic Biol Med 45:1047–1055PubMedCrossRefGoogle Scholar
  80. Sindhi V, Gupta V, Sharma K, Bhatnagar S, Kumari R, Dhaka N (2013) Potential applications of antioxidants. a review. J Pharm Res 7:828–835Google Scholar
  81. Singleton VL, Orthofer R, Lamuela RRM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178CrossRefGoogle Scholar
  82. Sousa EO, Miranda CMBA, Nobre CB, Boligon AA, Athayde ML, Costa JGM (2015) Phytochemical analysis and antioxidant activities of Lantana camara and Lantana montevidensis extracts. Ind Crop Prod 70:7–15CrossRefGoogle Scholar
  83. Spano C, Bruno M, Bottega S (2013) Calystegia soldanella: dune versus laboratory plants to highlight key adaptive physiological traits. Acta Psysiol Plant 35(4):1329–1336CrossRefGoogle Scholar
  84. Stanković MS, Niciforovic N, Mihailovic V, Topuzovic M, Solujic S (2012) Antioxidant activity, total phenolic content and flavonoid concentrations of different plant parts of Teucrium polium L. subsp. polium. Acta Soc Bot Pol 81(2):117CrossRefGoogle Scholar
  85. Stanković MS, Petrović M, Godjevac D, Stevanović ZD (2015) Screening inland halophytes from the central Balkan for their antioxidant activity in relation to total phenolic compounds and flavonoids: are there any prospective medicinal plants? J Arid Environ 120:26–32CrossRefGoogle Scholar
  86. Tahira R, Naeemullah M, Akbar F, Masood MS (2011) Major phenolic acids of local and exotic mint germplasm grown in Islamabad. Pak J Bot 43:151–154Google Scholar
  87. Takao T, Watanabe N, Yagi I, Sakata K (1994) A simple screening method for antioxidant and isolation of several antioxidants produced by marine bacteria from fish and shellfish. Biosci Biotechnol Biochem 58:1780–1783CrossRefGoogle Scholar
  88. Tapas AR, Sakarkar DM, Kakde RB (2008) Flavonoids as nutraceuticals: a review. Trop J Pharm Res 7(3):1089–1099CrossRefGoogle Scholar
  89. Trabelsi N, Megdiche W, Ksouri R, Falleh H, Oueslati S, Soumaya B, Hajlaoui H, Abdelly C (2010) Solvent effects on phenolic contents and biological activities of the halophyte Limoniastrum monopetalum leaves. LWT Food Sci Technol 43:632–639CrossRefGoogle Scholar
  90. Trabelsi N, Oueslati S, Falleh H, Waffo-Téguo P, Papastamoulis Y, Mérillon JM, Abdelly C, Ksouri R (2012) Isolation of powerful antioxidants from the medicinal halophyte Limoniastrum guyonianum. Food Chem 135(3):1419–1424PubMedCrossRefGoogle Scholar
  91. Trischitta F, Faggio C (2006) Effect of the flavonol quercetin on ion transport in the isolated intestine of the eel, Anguilla anguilla. Comp Biochem Physiol C Toxicol Pharmacol 143:17–22PubMedCrossRefGoogle Scholar
  92. Trischitta F, Faggio C (2008) Gossypol affects ion transport in the isolated intestine of the seawater adapted eel, Anguilla anguilla. Comp Biochem Physiol A Mol Integr Physiol 151:139–143PubMedCrossRefGoogle Scholar
  93. Verpoorte R (2000) Secondary metabolism. In: Verpoorte R, Alfermann AW (eds) Metabolic engineering of plant secondary metabolism. Springer, DordrechtCrossRefGoogle Scholar
  94. Vilela C, Santos SA, Coelho D, Silva AM, Freire CS, Neto CP, Silvestre AJ (2014) Screening of lipophilic and phenolic extractives from different morphological parts of Halimione portulacoides. Ind Crop Prod 52:373–379CrossRefGoogle Scholar
  95. Wang BN, Liu HF, Zheng JB, Fan MT, Cao W (2011) Distribution of phenolic acids in different tissues of jujube and their antioxidant activity. J Agric Food Chem 59(4):1288–1292PubMedCrossRefGoogle Scholar
  96. Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139PubMedCrossRefGoogle Scholar
  97. Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:165–183CrossRefGoogle Scholar
  98. Yang RY, Lin S, Kuo G (2008) Content and distribution of flavonoids among 91 edible plant species. Asia Pac J Clin Nutr 17:275–279PubMedGoogle Scholar
  99. Zaixiang L, Wang H, Zhu S, Ma C, Wang Z (2011) Antibacterial activity and mechanism of action of chlorogenic acid. J Food Sci 76(6):398–403CrossRefGoogle Scholar
  100. Zengin G, Uysal S, Ceylan R, Aktumsek A (2015) Phenolic constituent, antioxidative and tyrosinase inhibitory activity of Ornithogalum narbonense L. from Turkey: a phytochemical study. Ind Crop Prod 70:1–6CrossRefGoogle Scholar
  101. Ziaei M, Sharifi M, Behmanesh M, Razavi K (2012) Gene expression and activity of phenyl alanine amonialyase and essential oil composition of Ocimum basilicum L. at different growth stages. Iran J Biotechnol 10:32–39Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Milan Stanković
    • 1
    Email author
  • Dragana Jakovljević
    • 1
  • Marija Stojadinov
    • 1
  • Zora Dajić Stevanović
    • 2
  1. 1.Department of Biology and Ecology, Faculty of ScienceUniversity of KragujevacKragujevacSerbia
  2. 2.Faculty of AgricultureUniversity of BelgradeBelgradeSerbia

Personalised recommendations