Advertisement

Memory Enhancers

  • Eleftherios Halevas
  • Georgios K. Katsipis
  • Anastasia A. PantazakiEmail author
Chapter

Abstract

Polyhydroxyalkanoates (PHAs) constitute a family of naturally-occurring microbial polymers possessing excellent physicochemical properties, non-toxic behavior, biocompatibility and biodegradability which render them distinctive candidates for industrial applications especially in medicinal and pharmaceutical areas. In this review, we deepened in various cellular processes to collect and record information highlighting the biotechnological applications of PHA monomers or derivatives as memory amplifiers. Neurological conditions under the umbrella term of “dementia” are concerning millions of people worldwide, and their prevalence rises exponentially. These diseases are generally defined by gradual loss of cognitive and physical abilities, due to severe dysfunction of important central nervous system (CNS) areas. Neuronal and synaptic degeneration, though not specified in detail, are most probably multi-etiological events, caused by abnormal protein aggregation, neuro-inflammation, oxidative stress, and dys-regulated extracellular or intracellular signaling and energy supply. Therefore, multifunctional polymeric formulations without side effects, such as PHAs (polymers of hydroxy-organic acids), offer numerous applications in the prevention and treatment of various diseases. PHA monomers or derivatives (e.g. 3-hydroxybutyrate, 3-hydroxybutyrate methyl ester, 3-hydroxybutyl-3-hydroxybutyrate) are now proven to act as artificial ketogenic compounds and memory enhancers administered in ketogenic diets. Ketogenic diet (KD) is a well-known alternative for the treatment of neurological conditions, as the produced ketones affect protein modifications, attenuate oxidative and inflammatory stress and modulate signaling pathways contributing to neurogenesis. Collectively, PHAs can ameliorate brain and neuronal activity, improve memory recall and even alleviate important pathological features of neurodegenerative problems, such as Alzheimer’s disease (AD) – related amyloid plaques.

Keywords

Biopolymers Polyhydroxyalkanoates Memory enhancers 

References

  1. Achanta LB, Rae CD (2017) β-Hydroxybutyrate in the brain: one molecule, multiple mechanisms. Neurochem Res 42:35–49.  https://doi.org/10.1007/s11064-016-2099-2 CrossRefPubMedGoogle Scholar
  2. Alirezaei M, Kembal CC, Flynn CT, Wood MR, Whitton JL, Kiosses WB (2010) Short-term fasting induces profound neuronal autophagy. Autophagy 6:702–710.  https://doi.org/10.4161/auto.6.6.12376 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138:155–175.  https://doi.org/10.1016/j.pharmthera.2013.01.004 CrossRefPubMedGoogle Scholar
  4. Alsina B, Vu T, Cohen-Cory S (2001) Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF. Nat Neurosci 4:1093–1101.  https://doi.org/10.1038/nn735 CrossRefPubMedGoogle Scholar
  5. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472PubMedPubMedCentralGoogle Scholar
  6. Asplund K, Hagg E, Helmers C, Lithner F, Strand T, Wester PO (1980) The natural history of stroke in diabetic patients. Acta Med Scand 207:417–424.  https://doi.org/10.1111/j.0954-6820.1980.tb09749.x CrossRefPubMedGoogle Scholar
  7. Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64:238–258.  https://doi.org/10.1124/pr.111.005108 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Berridge MJ (1995) Calcium signalling and cell proliferation. BioEssays 17:491–500.  https://doi.org/10.1002/bies.950170605 CrossRefPubMedGoogle Scholar
  9. Bibel M, Barde YA (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 14:2919–2937.  https://doi.org/10.1101/gad.841400 CrossRefPubMedGoogle Scholar
  10. Blomqvist G, Alvarsson M, Grill V, Von Heijne G, Ingvar M, Thorell JO, Stone-Elander S, Widén L, Ekberg K (2002) Effect of acute hyperketonemia on the cerebral uptake of ketone bodies in non diabetic subjects and IDDM patients. Am J Physiol – Endocrinol Metab 283:E20–E28.  https://doi.org/10.1152/ajpendo.00294.2001 CrossRefPubMedGoogle Scholar
  11. Braak H, Del Tredici K (2012) Where, when, and in what form does sporadic Alzheimer’s disease begin? Curr Opin Neurol 25:708–714.  https://doi.org/10.1097/WCO.0b013e32835a3432 CrossRefPubMedGoogle Scholar
  12. Braeckman BP, Houthoofd K, De Vreese A, Vanfleteren JR (1999) Apparent uncoupling of energy production and consumption in long-lived Clk mutants of Caenorhabditis elegans. Curr Biol 9:493–496.  https://doi.org/10.1016/S0960-9822(99)80216-4 CrossRefPubMedGoogle Scholar
  13. Brownlow ML, Benner L, D’Agostino D, Gordon MN, Morgan D (2013) Ketogenic diet improves motor performance but not cognition in two mouse models of Alzheimer’s pathology. PLoS One 12:e75713.  https://doi.org/10.1371/journal.pone.0075713 CrossRefGoogle Scholar
  14. Camberos-Luna L, Gerónimo-Olvera C, Montiel T, Rincon-Heredia R, Massieu L (2016) The ketone body, β-hydroxybutyrate stimulates the autophagic flux and prevents neuronal death induced by glucose deprivation in cortical cultured neurons. Neurochem Res 41:600–609.  https://doi.org/10.1007/s11064-015-1700-4 CrossRefPubMedGoogle Scholar
  15. Carpenedo R, Pittaluga A, Cozzi A, Attucci S, Galli A, Raiteri M, Moroni F (2001) Presynaptic kynurenate-sensitive receptors inhibit glutamate release. Eur J Neurosci 13:2141–2147.  https://doi.org/10.1046/j.0953-816x.2001.01592.x CrossRefPubMedGoogle Scholar
  16. Chen GQ (2010a) Biofunctionalization of polymers and their applications. Adv Biochem Eng/Biotechnol 125:29–45.  https://doi.org/10.1007/10_2010_89 CrossRefGoogle Scholar
  17. Chen GQ (2010b) Plastics completely synthesized by bacteria: polyhydroxyalkanoates. In: Plastics from bacteria. Natural functions and applications, microbiology monographs, vol. 14. Springer-Verlag, Heidelberg, p 17–37. ISBN 978-3-642-03286-8.  https://doi.org/10.1007/978-3-642-03287-5 Google Scholar
  18. Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578.  https://doi.org/10.1016/j.biomaterials.2005.04.036 CrossRefPubMedGoogle Scholar
  19. Chen Z, Zhong C (2014) Oxidative stress in Alzheimer’s disease. Neurosci Bull 30:271–281.  https://doi.org/10.1007/s12264-013-1423-y CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cheng S, Wu Q, Yang F, Xu M, Leski M, Chen GQ (2005) Influence of DL-beta-hydroxybutyric acid on cell proliferation and calcium influx. Biomacromolecules 6:593–597.  https://doi.org/10.1021/bm049465y CrossRefPubMedGoogle Scholar
  21. Cheng S, Chen GQ, Leski M, Zou B, Wang Y, Qiong W (2006) The effect of D,L-β-hydroxybutyric acid on cell death and proliferationin L929 cells. Biomaterials 27:3758–3765.  https://doi.org/10.1016/j.biomaterials.2006.02.046 CrossRefPubMedGoogle Scholar
  22. Cheng B, Lu H, Bai B, Chen J (2013) d-β-Hydroxybutyrate inhibited the apoptosis of PC12 cells induced by H2O2 via inhibiting oxidative stress. Neurochem Int 62:620–625.  https://doi.org/10.1016/j.neuint.2012.09.011 CrossRefPubMedGoogle Scholar
  23. Chmiel-Perzyńska I, Kloc R, Perzyński A, Rudzki S, Urbańska EM (2011) Novel aspect of ketone action: b-Hydroxybutyrate increases brain synthesis of kynurenic acid in vitro. Neurotox Res 20:40–50.  https://doi.org/10.1007/s12640-010-9220-0 CrossRefPubMedGoogle Scholar
  24. Choi D (1992) Excitotoxic cell death. J Neurobiol 23:1261–1276.  https://doi.org/10.1002/neu.480230915 CrossRefPubMedGoogle Scholar
  25. Clarke K, Tchabanenko K, Pawlosky R, Carter E, King MT, Musa-Veloso K, Ho M, Roberts A, Robertson J, Vanltallie TB, Veech RL (2012a) Kinetics, safety and tolerability of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate in healthy adult subjects. Regul Toxicol Pharmacol 63:401–408.  https://doi.org/10.1016/j.yrtph.2012.04.008 CrossRefPubMedGoogle Scholar
  26. Clarke K, Tchabanenko K, Pawlosky R, Carter E, Knight NS, Murray AJ, Cochlin LE, King MT, Wong AW, Roberts A, Robertson J, Veech RL (2012b) Oral 28-day and developmental toxicity studies of (R)-3-hydroxybutyl (R)-3 hydroxybutyrate. Regul Toxicol Pharmacol 63:196–208.  https://doi.org/10.1016/j.yrtph.2012.04.001 CrossRefPubMedGoogle Scholar
  27. Colell A, Fernandez A, Fernandez-Checa JC (2009) Mitochondria, cholesterol and amyloid beta peptide: a dangerous trio in Alzheimer disease. J Bioenerg Biomembr 41:417–423.  https://doi.org/10.1007/s10863-009-9242-6 CrossRefPubMedGoogle Scholar
  28. Copeland JM, Cho J, Lo T Jr, Hur JH, Bahadorani S, Arabyan T, Rabie J, Soh J, Walker DW (2009) Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr Biol 19:1591–1598.  https://doi.org/10.1016/j.cub.2009.08.016 CrossRefPubMedGoogle Scholar
  29. Cotter DG, Schugar RC, Crawford PA (2013) Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol 304:H1060–H1076.  https://doi.org/10.1152/ajpheart.00646.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Crabb DP, Smith ND, Zhu H, Nielson KA, Woodard JL, Seidenberg M, Durgerian S, Hazlett KE, Figueroa CM, Kandah CC, Kay CD, Matthews MA (2014) What’s on TV? Detecting age-related neurodegenerative eye disease using eye movement scanpaths. Front Aging Neurosci 6.  https://doi.org/10.3389/fnagi.2014.00312
  31. de Roo G, Kellerhals MB, Ren Q, Witholt B, Kessler B (2002) Production of chiral R-3-hydroxyalkanoic acids and R-3-hydroxyalkanoic acid methylesters via hydrolytic degradation of polyhydroxyalkanoate synthesized by pseudomonads. Biotechnol Bioeng 77:717–722.  https://doi.org/10.1002/bit.10139 CrossRefPubMedGoogle Scholar
  32. Dell'agnello C, Leo S, Agostino A, Szabadkai G, Tiveron C, Zulian A, Prelle A, Roubertoux P, Rizzuto R, Zeviani M (2007) Increased longevity and refractoriness to Ca(2+)-dependent neurodegeneration in Surf1 knockout mice. Hum Mol Genet 16:431–444.  https://doi.org/10.1093/hmg/ddl477 CrossRefPubMedGoogle Scholar
  33. Du H, Guo L, Yan S, Sosunov AA, McKhann GM, Yan SS (2010) Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc Natl Acad Sci U S A 107:18670–18675.  https://doi.org/10.1073/pnas.1006586107 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Duan W, Mattson MP (1999) Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson’s disease. J Neurosci Res 57:195–206.  https://doi.org/10.1002/(SICI)1097-4547(19990715)57:2<195::AID-JNR5>3.0.CO;2-P CrossRefPubMedGoogle Scholar
  35. Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127.  https://doi.org/10.1016/j.biopsych.2006.02.013 CrossRefPubMedGoogle Scholar
  36. Dunnett SB, Bjorklund A (1999) Prospects for new restorative and neuroprotective treatments in Parkinson’s disease. Nature (London) 399:A32–A39CrossRefGoogle Scholar
  37. Edwards C, Canfield J, Copes N, Rehan M, Lipps D, Bradshaw PC (2014) D-beta-hydroxybutyrate extends lifespan in C. elegans. Aging (Albany NY) 6:621–644.  https://doi.org/10.18632/aging.100683 CrossRefGoogle Scholar
  38. Escapa IF, Morales V, Martino VP, Pollet E, Avérous L, García JL, Prieto MA (2011) Disruption of β-oxidation pathway in Pseudomonas putida KT2442 to produce new functionalized PHAs with thioester groups. Appl Microbiol Biotechnol 89:1583–1598.  https://doi.org/10.1007/s00253-011-3099-4 CrossRefPubMedGoogle Scholar
  39. Frazzitta G, Maestri R, Ghilardi MF, Riboldazzi G, Perini M, Bertotti G, Boveri N, Buttini S, Lombino FL, Uccellini D, Turla M, Pezzoli G, Comi C (2014) Intensive rehabilitation increases BDNF serum levels in parkinsonian patients: a randomized study. Neurorehabil Neural Repair 28:163–168.  https://doi.org/10.1177/1545968313508474 CrossRefPubMedGoogle Scholar
  40. Fukao T, Lopaschuk GD, Mitchell GA (2004) Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot Essent Fat Acids 70:243–251.  https://doi.org/10.1016/j.plefa.2003.11.001 CrossRefGoogle Scholar
  41. Gasior M, Rogawski MA, Hartman AL (2006) Neuroprotective and disease-modifying effects of the ketogenic diet. Behav Pharmacol 17:431–439CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gerngross TU (1999) Can biotechnology move us toward a sustainable society? Nat Biotechnol 17:541–542.  https://doi.org/10.1038/9843 CrossRefPubMedGoogle Scholar
  43. Gilbert DL, Pyzik PL, Freeman JM (2000) The ketogenic diet: seizure control correlates better with serum b-hydroxybutyrate than with urine ketones. J Child Neurol 15:787–790.  https://doi.org/10.1177/088307380001501203 CrossRefPubMedGoogle Scholar
  44. Go KG, Prenen GHM, Korf J (1988) Protective effect of fasting upon cerebral hypoxic-ischemic injury. Metab Brain Dis 3:257–263CrossRefPubMedGoogle Scholar
  45. Greer EL, Brunet A (2009) Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 8:113–127.  https://doi.org/10.1111/j.1474-9726.2009.00459.x CrossRefPubMedPubMedCentralGoogle Scholar
  46. Gross AL, Jones RN, Habtemariam DA, Fong TG, Tommet D, Quach L, Schmitt E, Yap L, Inouye SK (2012) Delirium and long-term cognitive trajectory among persons with dementia. Arch Intern Med 172:1324–1331.  https://doi.org/10.1001/archinternmed.2012.3203 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Guidetti P, Okuno E, Schwarcz R (1997) Characterization of rat brain kynurenine aminotransferases I and II. J Neurosci Res 50:457–465.  https://doi.org/10.1002/(SICI)1097-4547(19971101)50:3<457::AID-JNR12>3.0.CO;2-3 CrossRefPubMedGoogle Scholar
  48. Guidetti P, Amori L, Sapko MT, Okuno E, Schwarcz R (2007) Mitochondrial aspartate aminotransferase: a third kynurenateproducing enzyme in the mammalian brain. Neurochemistry 102:103–111.  https://doi.org/10.1111/j.1471-4159.2007.04556.x CrossRefGoogle Scholar
  49. Halevas E, Nday CM, Salifoglou A (2016) Hybrid catechin silica nanoparticle influence on Cu(II) toxicity and morphological lesions in primary neuronal cells. J Inorg Biochem 163:240–249.  https://doi.org/10.1016/j.jinorgbio.2016.04.017 CrossRefPubMedGoogle Scholar
  50. Hammami MM (1997) Book review: diabetes mellitus: a fundamental and clinical text. Ann Saudi Med 17:264CrossRefGoogle Scholar
  51. Hansen M, Hsu AL, Dillin A, Kenyon C (2005) New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet 1:119–128.  https://doi.org/10.1371/journal.pgen.0010017 CrossRefPubMedGoogle Scholar
  52. Harman D (2009) Origin and evolution of the free radical theory of aging: a brief personal history, 1954–2009. Biogerontology 10:773–781.  https://doi.org/10.1007/s10522-009-9234-2 CrossRefPubMedGoogle Scholar
  53. Hazer DB, Kılıçay E, Hazer B (2012) Poly(3-hydroxyalkanoate)s: Diversification and biomedical applications: a state of the art review. Mater Sci Eng C32:637–647.  https://doi.org/10.1016/j.msec.2012.01.021 CrossRefGoogle Scholar
  54. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Saecker A, Griep A, Axt D, Remus A, Tzeng T, Gelpi E, Halle A, Korte M, Latz E, Golenbock D (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493:674–678.  https://doi.org/10.1038/nature11729 CrossRefPubMedGoogle Scholar
  55. Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increase non-alph 7 nicotinic receptor expression; physiopathological implications. J Neurosci 21:7463–7473CrossRefPubMedGoogle Scholar
  56. Hiraide A, Katayama M, Sugimoto H, Yoshioka T, Sugimoto T (1991) Effect of 3-hydroxybutyrate on posttraumatic metabolism in man. Surgery 109:176–181PubMedGoogle Scholar
  57. Honjo K, Black SE, Verhoeff NP (2012) Alzheimer’s disease, cerebrovascular disease, and the β-amyloid cascade. Can J Neurol Sci 39:712–728CrossRefPubMedGoogle Scholar
  58. Huang WJ, Zhang X, Chen WW (2016) Role of oxidative stress in Alzheimer’s disease. Biomed Rep 4:519–522.  https://doi.org/10.3892/br.2016.630 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ibayashi S, Fujishima M, Sadoshima S, Yoshida F, Shiokawa O, Ogata J, Omae T (1986) Cerebral blood flow and tissue metabolism in experimental cerebral ischemia of spontaneously hypertensive rats with hyper-, normo-, and hypoglycemia. Stroke 17:261–266.  https://doi.org/10.1161/01.STR.17.2.261 CrossRefPubMedGoogle Scholar
  60. Ito K, Uchida Y, Ohtsuki S, Aizawa S, Kawakami H, Katsukura Y, Kamiie J, Terasaki T (2011) Quantitative membrane protein expression at the blood-brain barrier of adult and younger cynomolgus monkeys. J Pharm Sci 100:3939–3950.  https://doi.org/10.1002/jps.22487 CrossRefPubMedGoogle Scholar
  61. Izumi Y, Ishii K, Katsuki H, Benz AM, Zorumski CF (1998) Beta-hydroxybutyrate fuels synaptic function during development. Histological and physiological evidence in rat hippocampal slices. J Clin Invest 101:1121–1132.  https://doi.org/10.1172/JCI1009 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Jendrossek D (2007) Peculiarities of PHA granules preparation and PHA depolymerase activity determination. Appl Microbiol Biotechnol 74:1186–1196.  https://doi.org/10.1007/s00253-007-0860-9 CrossRefPubMedGoogle Scholar
  63. Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–432.  https://doi.org/10.1146/annurev.micro.56.012302.160838 CrossRefPubMedGoogle Scholar
  64. Jendrossek D, Schirmer A, Schlegel HG (1996) Biodegradation of polyhydroxyalkanoic acids. Appl Microbiol Biotechnol 46:451–463CrossRefPubMedGoogle Scholar
  65. Jorm AF, Dear KB, Burgess NM (2005) Projections of future numbers of dementia cases in Australia with and without prevention. Aust N Z J Psychiatry 39:959–963.  https://doi.org/10.1080/j.1440-1614.2005.01713.x CrossRefPubMedGoogle Scholar
  66. Jotheeswaran AT, Williams JD, Prince MJ (2010) The predictive validity of the 10/66 dementia diagnosis in Chennai, India: a 3-year follow-up study of cases identified at baseline. Alzheimer Dis Assoc Dis 24:296–302.  https://doi.org/10.1097/WAD.0b013e3181d5e540 CrossRefGoogle Scholar
  67. Jung HA, Min BS, Yokozawa T, Lee JH, Kim YS, Choi JS (2009) Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol Pharm Bull 32:1433–1438.  https://doi.org/10.1248/bpb.32.1433 CrossRefPubMedGoogle Scholar
  68. Kadouri D, Jurkevitch E, Okon Y, Castro-Sowinski S (2005) Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit Rev Microbiol 31:55–67.  https://doi.org/10.1080/10408410590899228 CrossRefPubMedGoogle Scholar
  69. Kalia VC, Prakash J, Koul S (2016) Biorefinery for glycerol rich biodiesel industry waste. Indian J Microbiol 56:113–125.  https://doi.org/10.1007/s12088-016-0583-7 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL (2000) D-beta-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc Natl Acad Sci U S A 97:5440–5444.  https://doi.org/10.1073/pnas.97.10.5440 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Katayama M, Hiraide A, Sugimoto H, Yoshioka T, Sugimoto T (1994) Effect of ketone bodies on hyperglycemia and lactic acidemia in hemorrhagic stress. JPEN J Parenter Enteral Nutr 18:442–446.  https://doi.org/10.1177/0148607194018005442 CrossRefPubMedGoogle Scholar
  72. Ke Y, Zhang XY, Ramakrishna S, He LM, Wu G (2017) Reactive blends based on polyhydroxyalkanoates: preparation and biomedical application. Mater Sci Eng C Mater Biol Appl 70:1107–1119.  https://doi.org/10.1016/j.msec.2016.03.114 CrossRefPubMedGoogle Scholar
  73. Kesl SL, Poff AM, Ward NP, Fiorelli TN, Ari C, Van Putten AJ, Sherwood JW, Arnold P, D’Agostino DP (2016) Effects of exogenous ketone supplementation on blood ketone, glucose, triglyceride, and lipoprotein levels in Sprague-Dawley rats. Nutr Metab (Lond) 13:9.  https://doi.org/10.1186/s12986-016-0069-y CrossRefGoogle Scholar
  74. Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40:607–619.  https://doi.org/10.1016/j.procbio.2004.01.053 CrossRefGoogle Scholar
  75. Kim DY, Kim HW, Chung MG, Rhee YH (2007) Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. J Microbiol 45:87–97PubMedGoogle Scholar
  76. Kirsch JR, D’Alecy LG (1984) Hypoxia induced preferential ketone utilization by Rat Brain slices. Stroke 15:319–323.  https://doi.org/10.1161/01.STR.15.2.319 CrossRefPubMedGoogle Scholar
  77. Koller M, Marsalek L, de Sousa Dias MM, Braunegg G (2017) Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 37:24–38.  https://doi.org/10.1016/j.nbt.2016.05.001 CrossRefGoogle Scholar
  78. Koppel SJ, Swerdlow RH (2017) Neuroketotherapeutics: a modern review of a century-old therapy. Neurochem Int pii: S0197-0186(17)30227-9.  https://doi.org/10.1016/j.neuint.2017.05.019 CrossRefPubMedGoogle Scholar
  79. Kroemer G, Mariño G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293.  https://doi.org/10.1016/j.molcel.2010.09.023 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Kulbe JR, Levy JMM, Coultrap SJ, Thorburn A, Baye KU (2014) Excitotoxic glutamate insults block autophagic flux in hippocampal neurons. Brain Res 1542:12–19.  https://doi.org/10.1016/j.brainres.2013.10.032 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015a) Biodiesel industry waste: a potential source of bioenergy and biopolymers. Indian J Microbiol 55:1–7.  https://doi.org/10.1007/s12088-014-0509-1 CrossRefGoogle Scholar
  82. Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015b) Biotechnology in aid of biodiesel industry effluent (glycerol): biofuels and bioplastics. In: Kalia VC (ed) Microbial factories. Springer, New Delhi, pp 105–119.  https://doi.org/10.1007/978-81-322-2598-0 CrossRefGoogle Scholar
  83. Kumar P, Ray S, Patel SKS, Lee JK, Kalia VC (2015c) Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int J Biol Macromol 78:9–16.  https://doi.org/10.1016/j.ijbiomac.2015.03.046 CrossRefPubMedPubMedCentralGoogle Scholar
  84. LaManna JC, Salem N, Puchowicz M, Erokwu B, Koppaka S, Flask C, Lee Z (2009) Ketones suppress brain glucose consumption. Adv Exp Med Biol 645:301–306.  https://doi.org/10.1007/978-0-387-85998-9_45 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Lamkanfi M, Dixit VM (2014) Mechanisms and functions of inflammasomes. Cell 157:1013–1022.  https://doi.org/10.1016/j.cell.2014.04.007 CrossRefPubMedGoogle Scholar
  86. Langa KM, Foster NL, Larson EB (2004) Mixed dementia: emerging concepts and therapeutic implications. JAMA 292:2901–2908.  https://doi.org/10.1001/jama.292.23.2901 CrossRefPubMedGoogle Scholar
  87. Leino RL, Gerhart DZ, Duelli R, Enerson BE, Drewes LR (2001) Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain. Neurochem Int 38:519–527CrossRefPubMedGoogle Scholar
  88. Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, Niedzielko TL, Schneider LE, Mastroeni D, Caselli R, Kukull W, Morris JC, Hulette CM, Schmechel D, Rogers J, Stephan DA (2008) Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci U S A 105:4441–4446.  https://doi.org/10.1073/pnas.0709259105 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Lim S, Chesser AS, Grima JC, Rappold PM, Blum D, Przedborski S, Tieu K (2011) D-β-hydroxybutyrate is protective in mouse models of Huntington’s disease. PLoS One 6:e24620.  https://doi.org/10.1371/journal.pone.0024620 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Liu Z, Ciocea A, Devireddy L (2014) Endogenous siderophore 2,5-dihydroxybenzoic acid deficiency promotes anemia and splenic iron overload in mice. Mol Cell Biol 34:2533–2546.  https://doi.org/10.1128/MCB.00231-14 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L (2017) Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxidative Med Cell Longev 2017:2525967.  https://doi.org/10.1155/2017/2525967 CrossRefGoogle Scholar
  92. Luccini E, Musante V, Neri E, Raiteri M, Pittaluga A (2007) N-methyl-D-aspartate autoreceptors respond to low and high agonist concentrations by facilitating, respectively, exocytosis and carrier-mediated release of glutamate in rat hippocampus. J Neurosci Res 85:3657–3665.  https://doi.org/10.1002/jnr.21446 CrossRefPubMedGoogle Scholar
  93. Magdouli S, Brar SK, Blais JF, Tyagi RD (2015) How to direct the fatty acid biosynthesis towards polyhydroxyalkanoates production? Biomass Bioenergy 74:268–279.  https://doi.org/10.1016/j.biombioe.2014.12.017 CrossRefGoogle Scholar
  94. Malm T, Bowald S, Bylock A, Saldeen T, Busch C (1992) Regeneration of pericardial tissue on absorbable polymer patches implanted into the pericardial sac. An immunohistochemical, ultrastructural and biochemical study in the sheep. Scand J Thorac Cardiovasc Surg 26:15–21.  https://doi.org/10.3109/14017439209099048 CrossRefPubMedGoogle Scholar
  95. Marais L, Stein DJ, Daniels WM (2009) Exercise increases BDNF levels in the striatum and decreases depressive-like behavior in chronically stressed rats. Metab Brain Dis 24:587–597.  https://doi.org/10.1007/s11011-009-9157-2 CrossRefPubMedGoogle Scholar
  96. Martinez V, Dinjaski N, De Eugenio LI, De la Pena F, Prieto MA (2014) Cell system engineering to produce extracellular polyhydroxyalkanoate depolymerase with targeted applications. Int J Biol Macromol 71:28–33.  https://doi.org/10.1016/j.ijbiomac.2014.04.013 CrossRefPubMedGoogle Scholar
  97. Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265.  https://doi.org/10.1146/annurev.immunol.021908.132715 CrossRefPubMedGoogle Scholar
  98. Martinowich K, Manji H, Lu B (2007) New insights into BDNF function in depression and anxiety. Nat Neurosci 10:1089–1093.  https://doi.org/10.1038/nn1971 CrossRefPubMedGoogle Scholar
  99. Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, Becker C, Franchi L, Yoshihara E, Chen Z, Mullooly N, Mielke LA, Harris J, Coll RC, Mills KH, Mok KH, Newsholme P, Nuñez G, Yodoi J, Kahn SE, Lavelle EC, O’Neill LA (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol 11:897–904.  https://doi.org/10.1038/ni.1935 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Masuda R, Monahan J, Kashiwaya Y (2005) D-beta-Hydroxybutyrate is neuroprotective against hypoxia in serum-free hippocampal primary cultures. J Neurosci Res 80:501–509CrossRefPubMedGoogle Scholar
  101. Mattson MP (2008) Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann N Y Acad Sci 1144:97–112.  https://doi.org/10.1196/annals.1418.005 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Mejía-Tober J, Montiel T, Massieu L (2006) D-β-hydroxybutyrate prevents glutamate-mediated lipoperoxidation and neuronal damage elicited during glycolysis inhibition in vivo. Neurochem Res 31:1399–1408.  https://doi.org/10.1007/s11064-006-9189-5 CrossRefGoogle Scholar
  103. Mercken EM, Carboneau BA, Krzysik-Walker SM, de Cabo R (2012) Of mice and men: the benefits of caloric restriction, exercise, and mimetics. Ageing Res Rev 11:390–398.  https://doi.org/10.1016/j.arr.2011.11.005 CrossRefPubMedGoogle Scholar
  104. Mizushima N, Levine B, Cuervo AM, Klionsky D (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075.  https://doi.org/10.1038/nature06639 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Montine TJ, Amarnath V, Martin ME, Strittmatter WJ, Graham DG (1996) E-4-hydroxy-2-nonenal is cytotoxic and cross-links cytoskeletal proteins in P19 neuroglial cultures. Am J Pathol 148:89–93PubMedPubMedCentralGoogle Scholar
  106. Moroni F, Russi P, Lombardi G, Beni M, Carlà V (1988) Presence of kynurenic acid in the mammalian brain. J Neurochem 51:177–180.  https://doi.org/10.1111/j.1471-4159.1988.tb04852.x CrossRefPubMedGoogle Scholar
  107. Nakamura S, Shibuya M, Saito Y, Nakashima H, Saito F, Higuchi A, Tsubota K (2003) Protective effect of D-beta-hydroxybutyrate on corneal epithelia in dry eye conditions through suppression of apoptosis. Invest Ophthalmol Vis Sci 44:4682–4688.  https://doi.org/10.1167/iovs.03-0198 CrossRefPubMedGoogle Scholar
  108. Natale JE, Stante SM, D’Alecy LG (1990) Elevated brain lactate accumulation and increased neurologic deficit are associated with modest hyperglycemia in global ischemia. Resuscitation 19:271–289.  https://doi.org/10.1016/0300-9572(90)90107-P CrossRefPubMedGoogle Scholar
  109. Nday CM, Halevas E, Jackson GE, Salifoglou A (2015) Quercetin encapsulation in modified silica nanoparticles: potential use against Cu(II)-induced oxidative stress in neurodegeneration. J Inorg Biochem 145:51–64.  https://doi.org/10.1016/j.jinorgbio.2015.01.001 CrossRefPubMedGoogle Scholar
  110. Németh H, Toldi J, Vécsei L (2006) Kynurenines, Parkinson’s disease and other neurodegenerative disorders: preclinical and clinical studies. J Neural Transm Suppl 70:285–304CrossRefGoogle Scholar
  111. Newman JC, Verdin E (2014) Ketone bodies as signaling metabolites. Trends Endocrinol Metab 25:42–52.  https://doi.org/10.1016/j.tem.2013.09.002 CrossRefPubMedGoogle Scholar
  112. Newport MT, VanItallie TB, Kashiwaya Y, King MT, Veech RL (2015) A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer’s disease. Alzheimers Dement 11:99–103.  https://doi.org/10.1016/j.jalz.2014.01.006 CrossRefPubMedGoogle Scholar
  113. O’Connor T, Sadleir KR, Maus E, Velliquette RA, Zhao J, Cole SL, Eimer WA, Hitt B, Bembinster LA, Lammich S, Lichtenthaler SF, Hébert SS, De Strooper B, Haass C, Bennett DA, Vassar R (2008) Phosphorylation of the translation initiation factor eIF2 alpha increases BACE1 levels and promotes amyloidogenesis. Neuron 60:988–1009.  https://doi.org/10.1016/j.neuron.2008.10.047 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, Shiosaka S, Hammarback JA, Urano F, Imaizumi K (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26:9220–9231.  https://doi.org/10.1128/MCB.01453-06 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Olney JW (1971) Glutamate-induced neuronal necrosis in the infant mouse hypothalamus. An electron microscopic study. J Neuropathol Exp Neurol 30:75–90CrossRefPubMedGoogle Scholar
  116. Panov A, Orynbayeva Z, Vavilin V, Lyakhovich V (2014) Fatty acids in energy metabolism of the central nervous system. Biomed Res Int 2014:472–459.  https://doi.org/10.1155/2014/472459 CrossRefGoogle Scholar
  117. Pantazaki AA, Tambaka MG, Langlois V, Guerin P, Kyriakidis DA (2003) Polyhydroxyalkanoate (PHA) biosynthesis in Thermus thermophilus: purification and biochemical properties of PHA synthase. Mol Cell Biochem 254:173–183CrossRefPubMedGoogle Scholar
  118. Pantazaki AA, Papaneophytou CP, Pritsa AG, Liakopoulou-Kyriakides M, Kyriakidis DA (2009) Production of polyhydroxyalkanoates from whey by Thermus thermophilus HB8. Process Biochem 44:847–853.  https://doi.org/10.1016/j.procbio.2009.04.002 CrossRefGoogle Scholar
  119. Pantazaki AA, Papaneophytou CP, Lambropoulou DA (2011) Simultaneous polyhydroxyalkanoates and rhamnolipids production by Thermus thermophilus HB8. AMB Express 1:17.  https://doi.org/10.1186/2191-0855-1-17 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Papaneophytou CP, Pantazaki AA (2011) A novel affinity chromatographic material for the purification of extracellular polyhydroxybutyrate depolymerases. J Polym Environ 19:876–886.  https://doi.org/10.1007/s10924-011-0345-x CrossRefGoogle Scholar
  121. Papaneophytou CP, Pantazaki AA, Kyriakidis DA (2009) An extracellular polyhydroxybutyrate depolymerase in Thermus thermophilus HB8. Appl Microbiol Biotechnol 83:659–668.  https://doi.org/10.1007/s00253-008-1842-2 CrossRefPubMedGoogle Scholar
  122. Papaneophytou CP, Velali EE, Pantazaki AA (2011) Purification and characterization of an extracellular medium-chain length polyhydroxyalkanoate depolymerase from Thermus thermophilus HB8. Polym Degrad Stab 96:670–678.  https://doi.org/10.1016/j.polymdegradstab.2010.12.015 CrossRefGoogle Scholar
  123. Pasinetti GM, Zhao Z, Qin W, Ho L, Shrishailam Y, Macgrogan D, Ressmann W, Humala N, Liu X, Romero C, Stetka B, Chen L, Ksiezak-Reding H, Wang J (2007) Caloric intake and Alzheimer’s disease. Experimental approaches and therapeutic implications. Interdiscip Top Gerontol 35:159–175.  https://doi.org/10.1159/000096561 CrossRefPubMedGoogle Scholar
  124. Patel SKS, Kumar P, Singh S, Lee JK, Kalia VC (2015a) Integrative approach for hydrogen and polyhydroxybutyrate production. In: Kalia VC (ed) Microbial factories: waste treatment. Springer, New Delhi, pp 73–85.  https://doi.org/10.1007/978-81-322-2598-0_5 CrossRefGoogle Scholar
  125. Patel SKS, Kumar P, Singh S, Lee JK, Kalia VC (2015b) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141.  https://doi.org/10.1016/j.biortech.2014.11.029 CrossRefPubMedGoogle Scholar
  126. Patel SKS, Lee JK, Kalia VC (2016) Integrative approach for producing hydrogen and polyhydroxyalkanoate from mixed wastes of biological origin. Indian J Microbiol 56:293–300.  https://doi.org/10.1007/s12088-016-0595-3 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Peng T, Gibula P, Yao KD, Goosen MF (1996) Role of polymers in improving the results of stenting in coronary arteries. Biomaterials 17:685–694.  https://doi.org/10.1016/0142-9612(96)86738-X CrossRefPubMedGoogle Scholar
  128. Plassman BL, Langa KM, Fisher GG, Heeringa SG, Weir DR, Ofstedal MB, Burke JR, Hurd MD, Potter GG, Rodgers WL, Steffens DC, Willis RJ, Wallace RB (2007) Prevalence of dementia in the United States: the aging, demographics, and memory study. Neuroepidemiology 29:125–132.  https://doi.org/10.1159/000109998 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Premkumar DR, Smith MA, Richey PL, Petersen RB, Castellani R, Kutty RK, Wiggert B, Perry G, Kalaria RN (1995) Induction of heme oxygenase-1 mRNA and protein in neocortex and cerebral vessels in Alzheimer’s disease. J Neurochem 65:1399–1402.  https://doi.org/10.1046/j.1471-4159.1995.65031399.x CrossRefPubMedGoogle Scholar
  130. Przedborski S, Kostic V, Giladi N, Eidelberg D (2003) Dopaminergic system in Parkinson’s disease. In: Sidhu A, Laruelle M, Vernier P (eds) Dopamine receptors and transporters. Marcel Dekker, New York, pp 363–402Google Scholar
  131. Pulsinelli WA, Levy DE, Sigsbee B, Scherer P, Plum F (1983) Increased damage after ischemic stroke in patients with hyperglycemia with or without established diabetes mellitus. Am J Med 74:540–544.  https://doi.org/10.1016/0002-9343(83)91007-0 CrossRefPubMedGoogle Scholar
  132. Raichle ME (1983) The pathophysiology of brain ischemia. Ann Neurol 13:2–10.  https://doi.org/10.1002/ana.410130103 CrossRefPubMedGoogle Scholar
  133. Ralser M, Wamelink MM, Struys EA, Joppich C, Krobitsch S, Jakobs C, Lehrach H (2008) A catabolic block does not sufficiently explain how 2-deoxy-D-glucose inhibits cell growth. Proc Natl Acad Sci U S A 105:17807–17811.  https://doi.org/10.1073/pnas.0803090105 CrossRefPubMedPubMedCentralGoogle Scholar
  134. Ray S, Kalia VC (2016) Microbial co-metabolism and polyhydroxyalkanoate co-polymers. Indian J Microbiol 57:39–47.  https://doi.org/10.1007/s12088-016-0622-4 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Ray S, Kalia VC (2017) Co-metabolism of substrates by Bacillus thuringiensis regulates polyhydroxyalkanoate co-polymer composition. Bioresour Technol 224:743–747.  https://doi.org/10.1016/j.biortech.2016.11.089 CrossRefPubMedGoogle Scholar
  136. Regen DM, Callis JT, Sugden MC (1983) Studies of cerebral beta-hydroxybutyrate transport by carotid injection; effects of age, diet and injectant composition. Brain Res 271:289–299CrossRefPubMedGoogle Scholar
  137. Reger MA, Henderson ST, Hale C, Cholerton B, Baker LD, Watson GS, Hyde K, Chapman D, Craft S (2004) Effects of β-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol Aging 25:311–314.  https://doi.org/10.1016/S0197-4580(03)00087-3 CrossRefPubMedGoogle Scholar
  138. Rehncrona S, Rosen I, Siesjo BK (1981) Brain lactic acidosis and ischemic cell damage: 1. Biochemistry and neurophysiology. J Cereb Blood Flow Metabol 1:297–311.  https://doi.org/10.1038/jcbfm.1981.34 CrossRefGoogle Scholar
  139. Ren Q, Ruth K, Thöny-Meyer L, Zinn M (2010) Enatiomerically pure hydroxycarboxylic acids: current approaches and future perspectives. Appl Microbiol Biotechnol 87:41–52.  https://doi.org/10.1007/s00253-010-2530-6 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Reusch RN (2015) Poly-(R)-3-hydroxybutyrates (PHB) are atherogenic components of lipoprotein Lp(a). Med Hypotheses 85:1041–1043.  https://doi.org/10.1016/j.mehy.2015.07.027 CrossRefPubMedGoogle Scholar
  141. Reusch RN, Sparrow AW, Gardiner J (1992) Transport of poly betahydroxybutyrate in human plasma. Biochim Biophys Acta 1123:33–40.  https://doi.org/10.1016/0005-2760(92)90168-U CrossRefPubMedGoogle Scholar
  142. Revett TJ, Baker GB, Jhamandas J, Kar S (2013) Glutamate system, amyloid β peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatry Neurosci 38:6–23.  https://doi.org/10.1503/jpn.110190 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Riddle MC, Hart J (1982) Hyperglycemia, recognized and unrecognized, as a risk factor for stroke and transient ischemic attacks. Stroke 13:356–359.  https://doi.org/10.1161/01.STR.13.3.356 CrossRefPubMedGoogle Scholar
  144. Ross ED, Shah SN, Prodan CI, Monnot M (2006) Changing relative prevalence of Alzheimer disease versus Non-Alzheimer disease dementias: have we underestimated the looming dementia epidemic? Dement Geriatr Cogn Disord 22:273–277.  https://doi.org/10.1159/000095127 CrossRefPubMedGoogle Scholar
  145. Russo-Neustadt AA, Beard RC, Huang YM, Cotman CW (2000) Physical activity and antidepressant treatment potentiate the expression of specific brain-derived neurotrophic factor transcripts in the rat hippocampus. Neuroscience 101:305–312.  https://doi.org/10.1016/S0306-4522(00)00349-3 CrossRefPubMedGoogle Scholar
  146. Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden AI, Lipinski MM (2014) Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy 10:2208–2222.  https://doi.org/10.4161/15548627.2014.981787 CrossRefPubMedGoogle Scholar
  147. Sato K, Kashiwaya Y, Keon CA, Tsuchiya N, King MT, Radda GK, Chance B, Clarke K, Veech RL (1995) Insulin, ketone bodies, and mitochondrial energy transduction. FASEB J 9:651–658CrossRefPubMedGoogle Scholar
  148. Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, Smith MA (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J Neurochem 68:2092–2097.  https://doi.org/10.1046/j.1471-4159.1997.68052092.x CrossRefPubMedGoogle Scholar
  149. Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303:1–10.  https://doi.org/10.1124/jpet.102.034439 CrossRefPubMedGoogle Scholar
  150. Seebach D, Beck AK, Breitschuh R, Job K (2003) Direct degradation of the biopolymer poly[(R)-3-hydroxybutyric acid] to (R)-3-hydroxybutanoic acid and its methyl ester. In: Org. Synth. Wiley, Hoboken, p 39–39.  https://doi.org/10.1002/0471264180.os071.05
  151. Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD, Newgard CB, Farese RV Jr, de Cabo R, Ulrich S, Akassoglou K, Verdin E (2013) Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339:211–214.  https://doi.org/10.1126/science.1227166 CrossRefPubMedGoogle Scholar
  152. Siemkowicz E, Hansen AJ (1978) Clinical restitution following cerebral ischemia in hypo-, normo- and hyperglycemic rats. Acta Neurol Scand 58:1–8.  https://doi.org/10.1111/j.1600-0404.1978.tb02855.x CrossRefPubMedGoogle Scholar
  153. Siesjo BK (1988) Acidosis and ischemic brain damage. Neurochem Pathol 9:31–88PubMedGoogle Scholar
  154. Singh M, Kumar P, Ray S, Kalia VC (2015) Challenges and opportunities for the customizing polyhydroxyalkanoates. Indian J Microbiol 55:235–249.  https://doi.org/10.1007/s12088-015-0528-6 CrossRefPubMedPubMedCentralGoogle Scholar
  155. Sleiman SF, Henry J, Al-Haddad R, El Hayek L, AbouHaidar E, Stringer T, Ulja D, Karuppagounder SS, Holson EB, Ratan RR, Ninan I, Chao MV (2016) Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. eLife 5:e15092.  https://doi.org/10.7554/eLife.15092 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Smith CD, Carney JM, Starke-Reed PE (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci U S A 88:10540–10543CrossRefPubMedPubMedCentralGoogle Scholar
  157. Smith MA, Kutty RK, Richey PL (1994a) Heme oxygenase-1 is associated with the neurofibrillary pathology of Alzheimer’s disease. Am J Pathol 145:42–47PubMedPubMedCentralGoogle Scholar
  158. Smith MA, Taneda S, Richey PL (1994b) Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc Natl Acad Sci U S A 91:5710–5714CrossRefPubMedPubMedCentralGoogle Scholar
  159. Smith MA, Harris PLR, Sayre LM, Beckman JS, Perry G (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci 17:2653–6537CrossRefPubMedGoogle Scholar
  160. Stone TW, Behan WM, Jones PA, Darlington LG, Smith RA (2001) The role of kynurenines in the production of neuronal death, and the neuroprotective effect of purines. J Alzheimers Dis 3:355–366.  https://doi.org/10.3233/JAD-2001-3401 CrossRefPubMedGoogle Scholar
  161. Suzuki M, Suzuki M, Sato K, Dohi S, Sato T, Matsuura A, Hiraide A (2001) Effect of β-Hydroxybutyrate, a cerebral function improving agent on cerebral hypoxia, anoxia and ischemia in mice and rats. Jpn J Pharmacol 87:143–150.  https://doi.org/10.1254/jjp.87.143 CrossRefPubMedGoogle Scholar
  162. Suzuki M, Suzuki M, Kitamura Y, Mori S, Sato K, Dohi S, Sato T, Matsuura A, Hiraide A (2002) β-Hydroxybutyrate, a cerebral function improving agent, protects rat brain against ischemic damage caused by permanent and transietn focal cerebral ischemia. Jpn J Pharmacol 89:36–43.  https://doi.org/10.1254/jjp.89.36 CrossRefPubMedGoogle Scholar
  163. Swerdlow RH, Burns JM, Khan SM (2010) The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzheimers Dis 20:S265–S279.  https://doi.org/10.3233/JAD-2010-100339 CrossRefPubMedGoogle Scholar
  164. Takeda A, Smith MA, Avila J, Nunomura A, Siedlak SL, Zhu X, Perry G, Sayre LM (2000) In Alzheimer’s disease, heme oxygenase is coincident with Alz50, an epitope of tau induced by 4-hydroxy-2-nonenal modification. J Neurochem 75:1234–1241.  https://doi.org/10.1046/j.1471-4159.2000.0751234.x CrossRefPubMedGoogle Scholar
  165. Tamagno E, Guglielmotto M, Aragno M, Borghi R, Autelli R, Giliberto L, Muraca G, Danni O, Zhu X, Smith MA, Perry G, Jo DG, Mattson MP, Tabaton M (2008) Oxidative stress activates a positive feedback between the gamma- and beta-secretase cleavages of the beta-amyloid precursor protein. J Neurochem 104:683–695.  https://doi.org/10.1111/j.1471-4159.2007.05072.x CrossRefPubMedGoogle Scholar
  166. Tanida I (2011) Autophagy basics. Microbiol Immunol 55:1–11.  https://doi.org/10.1111/j.1348-0421.2010.00271.x CrossRefPubMedGoogle Scholar
  167. Tieu K, Perier C, Caspersen C, Teismann P, Wu DC, Yan SD, Naini A, Vila M, Jackson-Lewis V, Ramasamy R, Przedborski S (2003) D-β-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J Clin Invest 112:892–901.  https://doi.org/10.1172/JCI200318797 CrossRefPubMedPubMedCentralGoogle Scholar
  168. Tildon JT, McKenna MC, Stevenson JH (1994) Transport of 3-hydroxybutyrate by cultured rat brain astrocytes. Neurochem Res 19:1237–1242CrossRefPubMedGoogle Scholar
  169. Turski WA, Gramsbergen JBP, Traitler H, Schwarcz R (1989) Rat brain slices produce and liberate kynurenic acid upon exposure to L-kynurenine. J Neurochem 52:1629–1636.  https://doi.org/10.1111/j.1471-4159.1989.tb09218.x CrossRefPubMedGoogle Scholar
  170. Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, Terasaki T (2011) Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem 117:333–345.  https://doi.org/10.1111/j.1471-4159.2011.07208.x CrossRefPubMedGoogle Scholar
  171. Urbanska E, Ikonomidou C, Sieklucka M, Turski WA (1991) Aminooxyacetic acid produces excitotoxic lesions in the rat striatum. Synapse 9:129–135.  https://doi.org/10.1002/syn.890090207 CrossRefPubMedGoogle Scholar
  172. Valappil SP, Misra SK, Boccaccini AR, Roy I (2006) Expert Rev Med Devices 3:853–868.  https://doi.org/10.1586/17434440.3.6.853 CrossRefPubMedGoogle Scholar
  173. Van der Auwera I, Wera S, Van Leuven F, Henderson ST (2005) A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer’s disease. Nutr Metab (Lond) 2:28.  https://doi.org/10.1186/1743-7075-2-28 CrossRefGoogle Scholar
  174. Vonsattel JP, Keller C, Cortes Ramirez EP (2011) Huntington’s disease-neuropathology. Handb Clin Neurol 100:83–100.  https://doi.org/10.1016/B978-0-444-52014-2.00004-5 CrossRefPubMedGoogle Scholar
  175. Wada H, Okada Y, Nabetani M, Nakamura H (1997) The effects of lactate and b-hydroxybutyrate on the energy metabolism and neural activity of hippocampal slices from adult and immature rat. Brain Res Dev Brain Res 101:1–7CrossRefPubMedGoogle Scholar
  176. Wang SY, Wang Z, Liu MM, Xu Y, Zhang XJ, Chen GQ (2010) Properties of a new gasoline oxygenate blend component: 3-Hydroxybutyrate methyl ester produced from bacterial poly-3-hydroxybutyrate. Biomass Bioenergy 34:1216–1222.  https://doi.org/10.1016/j.biombioe.2010.03.020 CrossRefGoogle Scholar
  177. Wen H, Miao EA, Ting JP (2013) Mechanisms of NOD-like receptor-associated inflammasome activation. Immunity 39:432–441.  https://doi.org/10.1016/j.immuni.2013.08.037 CrossRefPubMedGoogle Scholar
  178. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953CrossRefPubMedGoogle Scholar
  179. Williams DF (2009) On the nature of biomaterials. Biomaterials 30:5897–5909CrossRefPubMedGoogle Scholar
  180. Xiao XQ, Zhao Y, Chen GQ (2007) The effect of 3-hydroxybutyrate and its derivatives on the growth of glial cells. Biomaterials 28:3608–3616.  https://doi.org/10.1016/j.biomaterials.2007.04.046 CrossRefPubMedGoogle Scholar
  181. Yao J, Chen S, Mao Z, Cadenas E, Brinton RD (2011) 2-Deoxy-D-glucose treatment induces ketogenesis, sustains mitochondrial function, and reduces pathology in female mouse model of Alzheimer’s disease. PLoS One 6:e21788.  https://doi.org/10.1371/journal.pone.0021788 CrossRefPubMedPubMedCentralGoogle Scholar
  182. Youm YH, Grant RW, McCabe LR, Albarado DC, Nguyen KY, Ravussin A, Pistell P, Newman S, Carter R, Laque A, Münzberg H, Rosen CJ, Ingram DK, Salbaum JM, Dixit VD (2013) Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab 18:519–532.  https://doi.org/10.1016/j.cmet.2013.09.010 CrossRefPubMedPubMedCentralGoogle Scholar
  183. Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, D’Agostino D, Planavsky N, Lupfer C, Kanneganti TD, Kang S, Horvath TL, Fahmy TM, Crawford PA, Biragyn A, Alnemri E, Dixit VD (2015) The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nat Med 21:263–269.  https://doi.org/10.1038/nm.3804 CrossRefPubMedPubMedCentralGoogle Scholar
  184. Zawidlak-Węgrzyńska B, Kawalec M, Bosek I, Łuczyk-Juzwa M, Adamus G, Rusin A, Filipczak P, Glowala-Kosińska M, Wolańska K, Krawczyk Z, Kurcok P (2010) Synthesis and antiproliferative properties of ibuprofen–oligo(3-hydroxybutyrate) conjugates. Eur J Med Chem 45:1833–1842.  https://doi.org/10.1016/j.ejmech.2010.01.020 CrossRefPubMedGoogle Scholar
  185. Zhang XJ, Luo RC, Wang Z, Deng Y, Chen GQ (2009) Applications of (R)-3-hydroxyalkanoatemethyl esters derived from microbial polyhydroxyalkanoates as novel biofuels. Biomacromolecules 10:707–711.  https://doi.org/10.1021/bm801424e CrossRefPubMedGoogle Scholar
  186. Zhang J, Cao Q, Li S, Lu X, Zhao Y, Guan JS, Chen JC, Wu Q, Chen GQ (2013) 3-Hydroxybutyrate methyl ester as a potential drug against Alzheimer’s disease via mitochondria protection mechanism. Biomaterials 34:7552–7562.  https://doi.org/10.1016/j.biomaterials.2013.06.043 CrossRefPubMedGoogle Scholar
  187. Zhu X, Perry G, Smith MA, Wang X (2013) Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis 33:S253–S262.  https://doi.org/10.3233/JAD-2012-129005 CrossRefPubMedPubMedCentralGoogle Scholar
  188. Zinn M, Hany R (2005) Tailored material properties of polyhydroxyalkanoates through biosynthesis and chemical modification. Adv Eng Mater 7:408–411.  https://doi.org/10.1002/adem.200500053 CrossRefGoogle Scholar
  189. Zou Z, Sasaguri S, Rajesh KG, Suzuki R (2002) dl-3-Hydroxybutyrate administration prevents myocardial damage after coronary occlusion in rat hearts. Am J Physiol Heart Circ Physiol 283:H 1968–H 1974.  https://doi.org/10.1152/ajpheart.00250.2002 CrossRefGoogle Scholar
  190. Zou XH, Li HM, Wang S, Leski M, Yao YC, Yang XD, Huang QJ, Chen GQ (2009) The effect of 3-hydroxybutyrate methyl ester on learning and memory in mice. Biomaterials 30:1532–1541.  https://doi.org/10.1016/j.biomaterials.2008.12.012 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Eleftherios Halevas
    • 1
  • Georgios K. Katsipis
    • 1
  • Anastasia A. Pantazaki
    • 1
    Email author
  1. 1.Laboratory of Biochemistry, Department of ChemistryAristotle UniversityThessalonikiGreece

Personalised recommendations