Approaches for Enhancing Extraction of Bacterial Polyhydroxyalkanoates for Industrial Applications

  • Karine Laste Macagnan
  • Mariane Igansi Alves
  • Angelita da Silveira Moreira


Poly(3-hydroxybutyrate) [P(3HB)] and others polyhydroxyalkanoates (PHAs) are recovered from the cells after their accumulation, in the production phase. The impact of PHA extraction may represent more than 50% of total production process. To ensure proper removal of the bioplastic from the bacterial cells several unitary operations must be performed in the extraction process. In addition, one also need to take in to consideration: reduction of product losses during processing, preservation of the physicochemical properties of the biopolymer, obtaining a highly pure product, use of low toxicity solvents/chemicals. In this case, PHA extraction methods include: chemical methods by using solvents, chemical digestion and aqueous system of two phases; mechanical methods with high pressure homogenization, ball mill, French press and ultrasound; biological methods, with enzymatic digestion, digestion by bacteria and predatory larvae or single cell protein; or a combination of these methods. This chapter discusses both classical and innovative methods for recovering/purifying PHAs, emphasizing yield, purity and the effect on the properties of the obtained biopolymers.


Bioplastic Poly(3-hydroxybutyrate) Recovery methods Chemical methods Mechanical methods Biological methods 


  1. Anis SNS, Iqbal NM, Kumar S, Amirul AA (2013) Effect of different recovery strategies of P(3HB-co-3HHx) copolymer from Cupriavidus necator recombinant harboring the PHA synthase of Chromobacterium sp. USM2. Sep Purif Technol 102:111–117. CrossRefGoogle Scholar
  2. Aramvash A, Gholami-Banadkuki N, Moazzeni-Zavareh F, Hajizadeh-Turchi S (2015) An environmentally friendly and efficient method for extraction of PHB biopolymer with non-halogenated solvents. J Microbiol Biotechnol 25(11):1936–1943. CrossRefPubMedGoogle Scholar
  3. Aramvash A, Gholami-Banadkuki N, Seyedkarimi MS (2016) An efficient method for the application of PHA-poor solvents to extract polyhydroxybutyrate from Cupriavidus necator. Biotechnol Prog 32(6):1480–1487. CrossRefPubMedGoogle Scholar
  4. Biernacki M, Marzec M, Roick T, Pätz R, Baronian K, Bode R (2017) Enhancement of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) accumulation in Arxula adeninivorans by stabilization of production. Microb Cell Factories 16:144. CrossRefGoogle Scholar
  5. Budde CF, Riedel SL, Willis LB, Rha C, Sinskey AJ (2011) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Appl Environ Microbiol 77(9):2847–2854. CrossRefPubMedCentralPubMedGoogle Scholar
  6. Catone MV, Ruiz JA, Castellanos M, Segura D, Espin G, López N (2014) High Polyhydroxybutyrate production in Pseudomonas extremaustralis is associated with differential expression of horizontally acquired and core genome polyhydroxyalkanoate synthase genes. PLoS One 9:e98873. CrossRefPubMedCentralPubMedGoogle Scholar
  7. Chan CH, Kummerlöwe C, Kammer HW (2004) Crystallization and melting behavior of poly(3-hydroxybutyrate)-based blends. Macromol Chem Phys 205:664–675. CrossRefGoogle Scholar
  8. Chen Y, Yang H, Zhou Q, Chen J, Gu G (2001) Cleaner recovery of poly(3-hydroxybutyric acid) synthesized in Alcaligenes eutrophus. Process Biochem 36(6):501–506. CrossRefGoogle Scholar
  9. Fei T, Cazeneuve S, Zhiyou W, Wu L, Wang T (2016) Effective recovery of Poly-b-Hydroxybutyrate (PHB) biopolymer from Cupriavidus necator using a novel and environmentally friendly solvent system. AIChE J 32:678–685. CrossRefGoogle Scholar
  10. Fiorese ML, Freitas F, Pais J, Ramos AM, Aragão GMF, Reis MAM (2009) Recovery of polyhydroxybutyrate (PHB) from Cupriavidus necator biomass by solvent extraction with 1,2-propylene carbonate. Eng Life Sci 9(6):454–461. CrossRefGoogle Scholar
  11. Garcia MCF (2006) Proposta de um processo de extração de poli(3-hidroxibutirato) produzido por Cupriavidus necator e seu efeito sobre as características do polímero Dissertação (Mestre em Engenharia de Alimentos) – Departamento de Engenharia Química e Engenharia de Alimentos, Universidade Federal de Santa Catarina, Santa Catarina, 158fGoogle Scholar
  12. Ghatnekar MS, Pai JS, Ganesh M (2002) Production and recovery of poly-3-hydroxybutyrate from Methylobacterium sp V49. J Chem Technol Biotechnol 77:444–448. CrossRefGoogle Scholar
  13. Gözde G, Prechtl C, Krischhöfer F, Mothes G, Ondruschka J, Breener- Weiss G, Obst U, Posten C (2012) Electrofiltration as a purification strategy for microbial poly-(3-hydroxybutyrate). Bioresour Technol 123:272–278. CrossRefGoogle Scholar
  14. Gumel AM, Annuar MSM, Chisti Y (2013) Recent advances in the production, recovery and applications of polyhydroxyalkanoates. J Polym Environ 21(2):580–605. CrossRefGoogle Scholar
  15. Gutt B, Kehl K, Ren Q, Boesel LF (2016) Using ANOVA models to compare and optimize extraction protocols of P3HBHV from Cupriavidus necator. Ind Eng Chem Res 55(39):10355–10365. CrossRefGoogle Scholar
  16. Harrison ST (1991) Bacterial cell disruption: a key unit operation in the recovery of intracellular products. Biotechnol Adv 9:217–240. CrossRefPubMedGoogle Scholar
  17. Ibrahim MHA, Steinbüchel A (2009) Poly(3-Hydroxybutyrate) production from glycerol by Zobellella denitrificans MW1 via high-cell-density fed-batch fermentation and simplified solvent extraction. Appl Environ Microbiol 75(19):6222–6231. CrossRefPubMedCentralPubMedGoogle Scholar
  18. Iqbal M, Tao Y, Xie S, Zhu S, Chen D, Wang X, Huang L, Peng D, Sattar A, Shabbir MAB, Hussain HI, Ahmed S, Yuan Z (2016) Aqueous two-phase system (ATPS): an overview and advances in its applications. Biol Proced Online 18:1–18. CrossRefGoogle Scholar
  19. Ishak KA, Annuar MSM, Heidelberg T, Gumel AM (2016) Ultrasound-assisted rapid extraction of bacterial intracellular medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHAs) in medium mixture of solvent/marginal non-solvent. Arab J Sci Eng 41(1):33–44. CrossRefGoogle Scholar
  20. Jacquel N, Lo CW, Wei YH, Wu HS, Wang SS (2008) Isolation and purification of bacterial poly(3-hydroxyalkanoates). Biochem Eng J 39:15–27. CrossRefGoogle Scholar
  21. Jiang Y, Mikova G, Kleerebezem R, Wielen LAMVD, Cuellar MC (2015) Feasibility study of an alkaline-based chemical treatment for the purification of polyhydroxybutyrate produced by a mixed enriched culture. AMB Express 5:5–18. CrossRefPubMedCentralPubMedGoogle Scholar
  22. Kachrimanidou V, Kopsahelis N, Vlysidis A, Papanikolaou S, Kookos JK, Martínez BM, Rondán MCE, Koutinas AA (2016) Downstream separation of poly(hydroxyalkanoates) using crude enzyme consortia produced via solid state fermentation integrated in a biorefinery concept. Food Bioprod Process 100:323–334. CrossRefGoogle Scholar
  23. Kapritchkoff FM, Viotti AP, Alli RCP, Zuccolo M, Pradella JGC, Maiorano AE, Miranda EA, Bonomi A (2006) Enzymatic recovery and purification of polyhydroxybutyrate produced by Ralstonia eutropha. J Biotechnol 122:453–462. CrossRefPubMedGoogle Scholar
  24. Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40(2):607–619. CrossRefGoogle Scholar
  25. Koller M, Bona R, Chiellini E (2013) Extraction of short-chain-length poly- [(R)-hydroxyalkanoates] (scl-PHA) by the “anti-solvent” acetone under elevated temperature and pressure. Biotechnol Lett 35:1023–1028. CrossRefPubMedGoogle Scholar
  26. Kosseva MR, Rusbandi E (2017) Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing. Int J Biol Macromol 107(Pt A):762–778. CrossRefPubMedGoogle Scholar
  27. Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, Reis MAM (2017) Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4:55–98. CrossRefPubMedCentralGoogle Scholar
  28. Kunasundari B, Murugaiyah V, Kaur G, Maurer FHJ, Sudesh K (2013) Revisiting the single cell protein application of cupriavidus necator h16 and recovering bioplastic granules simultaneously. PLoS One 8(10):e78528. CrossRefPubMedCentralPubMedGoogle Scholar
  29. Kunasundari B, Arza CR, Maurer FHJ, Murugaiyah V, Kaur G, Sudesh K (2017) Biological recovery and properties of poly(3-hydroxybutyrate) from Cupriavidus necator H16. Sep Purif Technol 172:1–6. CrossRefGoogle Scholar
  30. Lee SY (1996) Bacterial Polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14CrossRefPubMedGoogle Scholar
  31. Leong YK, Koroh FE, Show PL, Lan JCW, Loh HS (2015) Optimisation of extractive bioconversion for green polymer via aqueous two-phase system. Chem Eng Trans 45:1495–1500. CrossRefGoogle Scholar
  32. Leong YK, Lan JCW, Loh HS, Ling TC, Ooi CW, Show PL (2016) Cloud-point extraction of green-polymers from Cupriavidus necator lysate using thermoseparating-based aqueous two-phase extraction. J Biosci Bioeng 123(3):3270–3375. CrossRefGoogle Scholar
  33. Ling Y, Wong HH, Thomas CJ, Williams DRG, Middelberg APJ (1998) Pilot-scale extraction of PHB from recombinant E. coli by homogenization and centrifugation. Bioseparation 7:9–15CrossRefGoogle Scholar
  34. Liu JG, Xing JM, Chang TS, Ma ZY, Liu HZ (2005) Optimization of nutritional conditions for nattokinase production by Bacillusnatto NLSSE using statistical experimental methods. Process Biochem 40(8):2757–2762. CrossRefGoogle Scholar
  35. López-Abelairas M, García-Torreiro M, Lú-Chau T, Lema JM, Steinbüchel A (2015) Comparison of several methods for the separation of poly(3-hydroxybutyrate) from Cupriavidus necator H16 cultures. Biochem Eng J 93:250–259. CrossRefGoogle Scholar
  36. Macagnan KL, Rodrigues AA, Alves MI, Furlan L, Kesserlingh SM, Moura AB, Oliveira PD, McBride AJA, Moreira AS, Vendruscolo CT (2017) Simplified recovery process of Ralstonia solanacearum-synthesized polyhydroxyalkanoates via chemical extraction complemented by liquid-liquid phase separation. Quim Nova 40(2):125–130. CrossRefGoogle Scholar
  37. Mantellato PE, Durão NAS (2008) Process for extracting and recovering polyhydroxyalkanoates (phas) from cellular biomass. U.S Pat. 20080193987 A1Google Scholar
  38. Maresca P, Donsı F, Ferrari G (2011) Application of a multi-pass high pressure homogenization treatment for the pasteurization of fruit juices. J Food Eng 104:364–372. CrossRefGoogle Scholar
  39. Martínez V, Jurkevitch E, García JL, Prieto MA (2013) Reward for Bdellovibrio bacteriovorus for preying on a polyhydroxyalkanoate producer. Environ Microbiol 15(4):1204–1215. CrossRefPubMedGoogle Scholar
  40. Martínez V, Herencias C, Jurkevitch E, Prieto MA (2016) Engineering a predatory bacterium as a proficient killer agent for intracellular bioproducts recovery: the case of the polyhydroxyalkanoates. Sci Rep 6:24381. CrossRefPubMedCentralPubMedGoogle Scholar
  41. Martino L, Cruz MV, Scoma A, Freitas F, Bertin L, Scandola M, Reis MAM (2014) Recovery of amorphous polyhydroxybutyrate granules from Cupriavidus necator cells grown on used cooking oil. Int J Biol Macromol 71:117–123. CrossRefPubMedGoogle Scholar
  42. Masson LMP (2010) Desenvolvimento de bebida láctea fermentada submetida ao processamento térmico e/ou à homogeneização à ultra-alta pressão. 109p. Tese (Doutorado em Engenharia Química) – Escola de Química, Universidade Federal do Rio de Janeiro, Rio de JaneiroGoogle Scholar
  43. Michelon M, Borba TM, Rafael RS, Burket CAV, Burket JFM (2012) Extraction of carotenoids from Phaffia rhodozyma: a comparison between different techniques of cell disruption. Food Sci Biotechnol 21:1–8. CrossRefGoogle Scholar
  44. Middelberg APJ (1995) Process-scale disruption of microorganisms. Biotechnol Adv 13:491–551. CrossRefPubMedGoogle Scholar
  45. Murugan P, Han L, Gan CY, Maurer FHJ, Sudesh K (2016) A new biological recovery approach for PHA using mealworm, Tenebrio molitor. J Biotechnol 239:98–105. CrossRefPubMedGoogle Scholar
  46. Murugesan S, Iyyaswami R (2017) Low frequency sonic waves assisted cloud point extraction of polyhydroxyalkanoate from Cupriavidus necator. J Chromatogr B Analyt Technol Biomed Life Sci 1060:207–214. CrossRefGoogle Scholar
  47. Ng LM, Sudesh K (2016) Identification of a new polyhydroxyalkanoate (PHA) producer Aquitalea sp. USM4 (JCM 19919) and characterization of its PHA synthase. J Biosci Bioeng 122:550–557. CrossRefPubMedGoogle Scholar
  48. Peng YU, Lo CCW, Wu HS (2013) The isolation of poly(3-hydroxybutyrate) from recombinant Escherichia coli xl1-blue using the digestion method. Can J Chem Eng 91(1):77–83. CrossRefGoogle Scholar
  49. Quines LKM (2015) Extração de poli(3-hidroxibutirato), produzido por Cupriavidus necator, utilizando carbonato de propileno combinado com métodos mecânicos. Tese de doutorado - Programa de Pós-Graduação em Engenharia de Alimentos, Universidade Federal de Santa Catarina, FlorianópolisGoogle Scholar
  50. Quines LKM, Ienczak JL, Schmidt M, Zanfonato K, Rodrigues MI, Schmidell W, Aragão GMF (2015) Extração de poli(3-hidroxibutirato), produzido por Cupriavidus necator, com carbonato de propileno. Quim Nova 38(2):214–220. CrossRefGoogle Scholar
  51. Rathi DN, Amir HG, Abed RMM, Kosugi A, Arai T, Sulaiman O, Hashim R, Sudesh K (2013) Polyhydroxyalkanoate biosynthesis and simplified polymer recovery by a novel moderately halophilic bacterium isolated from hypersaline microbial mats. J Appl Microbiol 114:384–395. CrossRefPubMedGoogle Scholar
  52. Riedel LS, Brigham CJ, Budde CF, Bader J, Rha C, Stahl U, Sinskey AJ (2013) Recovery of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from Ralstonia eutropha cultures with non-halogenated solvents. Biotechnol Bioeng 110(2):461–470. CrossRefPubMedGoogle Scholar
  53. Rodríguez-Contreras A, Koller M, Dias MMS, Calafell M, Braunegg G, Marqués-Calvo MS (2013) Novel poly[(r)-3-hydroxybutyrate]-producing bacterium isolated from a bolivian hypersaline lake. Food Technol Biotechnol 51(1):123–130Google Scholar
  54. Serafim LS, Lemos PC, Levantesi C, Tandoi V, Santos H, Reis MAM (2002) Methods for detection and visualization of intracellular polymers stored by polyphosphate-accumulating microorganisms. J Microbiol Methods 51(1):1–18. CrossRefPubMedGoogle Scholar
  55. Suzuki DV, Carter JM, Rodrigues MFA, Silva ES, Maiorano AE (2018) Purification of polyhydroxybutyrate produced by Burkholderia cepacia IPT64 through a chemical and enzymatic route. World J Microbiol Biotechnol 24:771–775. CrossRefGoogle Scholar
  56. Tamer IM, Moo-Young M (1998) Disruption of Alcaligenes latus for recovery of poly(β-hydroxybutyric acid): comparison of high-pressure homogenization, bead milling, and chemically induced lysis. Ind Eng Chem Res 37:1807–1814CrossRefGoogle Scholar
  57. Valappil SP, Misra SK, Boccaccini AR, Keshavarz T, Bucke C, Roya I (2007) Large-scale production and efficient recovery of P(3HB) with desirable material properties, from the newly characterized Bacillus cereus SPV. J Biotechnol 132:251–258. CrossRefPubMedGoogle Scholar
  58. Van HP, Middelberg AP, Van Der Lans RG, Van Der Wielen LA (2004) Relation between cell disruption conditions, cell debris particle size, and inclusion body release. Biotechnol Bioeng 88:100–110. CrossRefGoogle Scholar
  59. Villano M, Valentino F, Barbetta A, Martino L, Scandola M, Majone M (2013) Polyhydroxyalkanoates production with mixed microbial cultures: from culture selection to polymer recovery in a high-rate continuous process. New Biotechnol 31(4):289–296. CrossRefGoogle Scholar
  60. Xiao N, Jiao N, Liu Y (2015) In vivo and in vitro observations of polyhydroxybutyrate granulesformed by Dinoroseobacter sp. JL 1447. Biol Macromol 74:467–475. CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Karine Laste Macagnan
    • 1
  • Mariane Igansi Alves
    • 2
  • Angelita da Silveira Moreira
    • 1
    • 2
  1. 1.Biotechnology, Technological Development CenterFederal University of PelotasPelotasBrazil
  2. 2.Department of Food Science and Technology, Faculty of Agronomy Eliseu MacielFederal University of PelotasPelotasBrazil

Personalised recommendations