Novel Biocontrol Agents: Short Chain Fatty Acids and More Recently, Polyhydroxyalkanoates

  • Vaishnavi Gowda
  • Srividya ShivakumarEmail author


Antibiotic resistance is a risk which has gradually become common knowledge. Steps are being actively taken to limit the use of antibiotics. The meat industry (poultry, piggery and sea food) are prone to infections. Containing these infections becomes cardinal for the meat which is ultimately meant for human consumption. Alternatives are therefore sought. Two alternatives which show promising pathogen containment are short chain fatty acids (SCFA) and Polyhydroxyalkanoates (PHA). SCFA are known to impart bactericidal effect apart from other benefits to the host. PHAs which have been viewed as alternatives to conventional plastic are rich sources of SCFA monomer pools. The most widely studied PHA is Polyhydroxybutyrate (PHB), a homopolymer made of 3-Hydroxybutrate (3HB) monomers. Many studies have been conducted on both SCFA and PHA on their use as biocontrol agents to understand the physiological mechanism of action for both.


Biocontrol Short chain fatty acid SCFA Polyhydroxyalkanoate PHB 3HB 


  1. Axe DD, Bailey JE (1995) Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coli. Biotechnol Bioeng 47:8–19. CrossRefPubMedGoogle Scholar
  2. Baruah K, Tran T, Huy NP, Niu Y, Gupta SK, De Schryver P, Bossier P (2015) Probing the protective mechanism of poly-ß-hydroxybutyrate against vibriosis by using gnotobiotic Artemia franciscana and Vibrio campbellii as host-pathogen model. Sci Rep 5:9427. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Berndt BE, Zhang M, Owyang SY, Cole TS, Wang TW, Luther J, Veniaminova NA, Merchant JL, Chen CC, Huffnagle GB, Kao JY (2012) Butyrate increases IL-23 production by stimulated dendritic cells. Am J Physiol Gastrointest Liver Physiol 303(12):G1348–G1392. CrossRefGoogle Scholar
  4. Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144. CrossRefPubMedGoogle Scholar
  5. Cam DTV, Hao NV, Dierckens K, Defoirdt T, Boon N, Sorgeloos P, Bossier P (2009) Novel approach of using homoserine lactone degrading and poly-β-hydroxybutyrate-accumulating bacteria to protect Artemia from the pathogenic effects of Vibrioharveyi. Aquaculture 291:23–30. CrossRefGoogle Scholar
  6. Chaijamrus S, Udpuay N (2008) Production and characterization of polyhydroxybutyrate from molasses and corn steep liquor produced by Bacillus megaterium ATCC 6748. Agric Eng Int X:1–12Google Scholar
  7. Cherrington CA, Hinton M, Pearson GR, Chopra I (1991) Short-chain organic acids at pH 5.0 kill Escherichiacoli and Salmonella sp. without causing membrane perturbation. J Appl Bacteriol 70:161–165. CrossRefPubMedGoogle Scholar
  8. Davidson PM (2001) Chap. 29. Chemical preservatives and natural antimicrobial compounds. In: Doyle MP, Beuchat LR, Montville TJ (eds) Food microbiology—fundamentals and Frontiers, 2nd edn. American Society for Microbiology, Washington, DC, pp 593–627Google Scholar
  9. Davidson P, Taylor T (2007) Chemical preservatives and natural antimicrobial compounds. In: Doyle M, Beuchat L (eds) Food microbiology: fundamentals and frontiers, 3rd edn. ASM Press, Washington, DC, pp 713–745. CrossRefGoogle Scholar
  10. De Schryver P, Sinha AK, Kunwar PS, Baruah K, Verstraete W, Boon N, De Boeck G, Bossier P (2010) Poly-ß-hydroxybutyrate (PHB) increases growth performance and intestinal bacterial range-weighted richness in juvenile European sea bass, Dicentrarchus labrax. Appl Microbiol Biotechnol 86:1535–1541. CrossRefPubMedGoogle Scholar
  11. Defoirdt T, Halet D, Vervaeren H, Boon N, de Wiele TV, Sorgeloos P, Bossier P, Verstraete W (2007) The bacterial storage compound poly-b-hydroxybutyrate protects Artemia franciscana from pathogenic Vibrio campbellii. Environ Microbiol 9:445–452. CrossRefPubMedGoogle Scholar
  12. Diez-Gonzalez F, Russell JB (1997) The ability of Escherichia coli O157:H7 to decrease its intracellular pH and resist the toxicity of acetic acid. Microbiology 143:1175–1180. CrossRefPubMedGoogle Scholar
  13. Dobson A, Cotter PD, Ross RP, Hill C (2012) Bacteriocin production: a probiotic trait? Appl Environ Microbiol 78:1–6. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13:517–526. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ (2002) Acetate utilization and Butyryl coenzyme a (CoA):acetate-CoA Transferase in butyrate-producing Bacteria from the human large intestine. Appl Environ Microbiol 68(10):5186–5190.–5190.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Duncan SH, Holtrop G, Lobley GE, Calder AG, Stewart CS, Flint HJ (2004) Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr 91:915923. CrossRefGoogle Scholar
  17. Ferber D (2003) Antibiotic resistance—WHO advises kicking the livestock antibiotic habit. Science 301:1027–1027. CrossRefPubMedGoogle Scholar
  18. Fischbach MA, Sonnenburg JL (2011) Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe 10:336–347. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Forni D, Wenk C, Bee G (1999) Digestive utilization of novel biodegradable plastic in growing pigs. Ann Zootech 48:163–171. CrossRefGoogle Scholar
  20. Franke A, Roth O, De Schryver P, Bayer T, Garcia-Gonzalez L, Künzel S, Bossier P, Joanna J, Miest, Clemmesen C (2017) Poly-β-hydroxybutyrate administration during early life: effects on performance, immunity and microbial community of European sea bass yolk-sac larvae. Sci Rep 7:15022. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Freier T, Kunze C, Nischan C, Kramer S, Sternberg K, Sab M, Hopt UT, Schmitz KP (2002) In vitro and in vivo degradation studies for development of a biodegradable patch based on poly (3-hydroxybutyrate). Biomaterials 23:2649–2657. CrossRefPubMedGoogle Scholar
  22. Gallo RL, Hooper LV (2012) Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol 12:503–516. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gantois I, Ducatelle R, Pasmans F, Haesebrouck F, Hautefort I, Thompson A (2006) Butyrate specifically down-regulates salmonella pathogenicity island 1 gene expression. Appl Environ Microbiol 72:946–949. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gowda V, Shivakumar S (2013) Poly(3)hydroxybutyrate (phb) production in Bacillus thuringiensis IAM 12077 under varied nutrient limiting conditions and molecular detection of class IV pha synthase gene by PCR. Int J Pharm Bio Sci 4:794–802Google Scholar
  25. Gowda V, Shivakumar S (2015) Poly(-β-hydroxybutyrate) (PHB) depolymerase PHAZPen from Penicillium expansum: purification, characterization and kinetic studies. 3 Biotech 5:901–909. CrossRefGoogle Scholar
  26. Halet D, Defoirdt T, Van Damme P, Vervaeren H, Forrez I, de Wiele TV, Boon N, Sorgeloos P, Bossier P, Verstraete W (2007) Poly-b-hydroxybutyrate-accumulating bacteria protect gnotobiotic Artemia franciscana from pathogenic Vibrio campbellii. FEMS Microbiol Ecol 60:363–369. CrossRefPubMedGoogle Scholar
  27. Hong YH, Nishimura Y, Hishikawa D, Tsuzuki H, Miyahara H, Gotoh C (2005) Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146:5092–5099. CrossRefPubMedGoogle Scholar
  28. Hosseini E, Grootaert C, Verstraete W, Van de Wiele T (2011) Propionate as a health-promoting microbial metabolite in the human gut. Nutr Rev 69:245–258. CrossRefPubMedGoogle Scholar
  29. Humblot C, Bruneau A, Sutren M, Lhoste EF, Dore J, Andrieux C, Rabot S (2005) Brussels sprouts, inulin and fermented milk alter the faecal microbiota of human microbiota-associated rats as shown by PCR-temporal temperature gradient gel electrophoresis using universal, Lactobacillus and Bifidobacterium 16S rRNA gene primers. Br J Nutr 93:677684. CrossRefGoogle Scholar
  30. Israni N, Shivakumar S (2013) Combinatorial screening of hydrolytic enzyme/s and PHA producing bacillus spp., for cost effective production of PHAs. Int J Pharm Bio Sci 4:934–945Google Scholar
  31. Jendrossek D (1998) Microbial degradation of polyesters: a review on extracellular poly (hydroxyalkanoic acid) depolymerases. Polym Degrad Stab 59:317–325. CrossRefGoogle Scholar
  32. Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–432. CrossRefPubMedGoogle Scholar
  33. Kiran GS, Priyadharshini S, Dobson ADW, Gnanamani E, Selvin J (2016) Degradation intermediates of polyhydroxybutyrate inhibit phenotypic expression of virulence factors and biofilm formation in luminescent Vibrio sp. PUGSK8. NPJ Biofilms Microbiomes 2:16002. CrossRefGoogle Scholar
  34. Kirkpatrick C, Maurer LM, Oyelakin NE, Yoncheva YN, Maurer R, Slonczewski JL (2001) Acetate and formate stress: opposite responses in the proteome of Escherichia coli. J Bacteriol 183:6466–6477. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186. CrossRefPubMedGoogle Scholar
  36. Laranja JLQ, Amar EC, Ludevese-Pascual GL, Nui Y, Geaga MJ, De Schryver P, Bossier P (2017) A probiotic bacillus strain containing amorphous poly-beta-hydroxybutyrate (PHB) stimulates the innate immune response of Penaeus monodon postlarvae. Fish Shellfish Immunol 68:202–210. CrossRefPubMedGoogle Scholar
  37. Lawley TD, Walker AW (2013) Intestinal colonization resistance. Immunology 138:1–11. CrossRefPubMedGoogle Scholar
  38. Layden BT, Angueira AR, Brodsky M, Durai V, Lowe WL Jr (2013) Short chain fatty acids and their receptors: new metabolic targets. Transl Res 161:131–140. CrossRefPubMedGoogle Scholar
  39. Leatham MP, Banerjee S, Autieri SM, Mercado-Lubo R, Conway T, Cohen PS (2009) Precolonized human commensal Escherichia coli strains serve as a barrier to E. coli O157:H7 growth in the Streptomycin-treated mouse intestine. Infect Immun 77:2876–2886. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lemos PC, Serafim LS, Reis MAM (2006) Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding. J Biotechnol 122:226–238. CrossRefPubMedGoogle Scholar
  41. Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR, Lu MM, Kosinski JR (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 7:e35240. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Louis P, Duncan SH, McCrae SI, Millar J, Jackson MS, Flint HJ (2004) Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 186:2099–2106. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Millette M, Cornut G, Dupont C, Shareck F, Archambault D, Lacroix M (2008) Capacity of human nisin- and pediocin-producing lactic acid bacteria to reduce intestinal colonization by vancomycin-resistant Enterococci. Appl Environ Microbiol 74:1997–2003. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Najdegerami EH, Tran TN, Defoirdt T, Marzorati M, Sorgeloos P, Boon N, Bossier P (2012) Effects of poly-b-hydroxybutyrate (PHB) on Siberian sturgeon (Acipenser baerii) fingerlings performance and its gastrointestinal tract microbial community. FEMS Microbiol Ecol 79:25–33. CrossRefPubMedGoogle Scholar
  45. Nava GM, Friedrichsen HJ, Stappenbeck TS (2011) Spatial organization of intestinal microbiota in the mouse ascending colon. ISME J 5:627–638. CrossRefPubMedGoogle Scholar
  46. Nhan DT, Wille M, De Schryver P, Defoirdt T, Bossier P, Sorgeloos P (2010) The effect of poly-β-hydroxybutyrate on larviculture of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture 302:76–81. CrossRefGoogle Scholar
  47. Pal A, Prabhu A, Kumar AA, Rajagopal B, Dadhe K, Ponnamma V, Shivakumar S (2009) Optimization of process parameters for maximum poly(-beta-)hydroxybutyrate (PHB) production by Bacillus thuringiensis IAM 12077. Pol J Microbiol 58:149–154PubMedGoogle Scholar
  48. Pedron T, Mulet C, Dauga C, Frangeul L, Chervaux C, Grompone G (2012) A crypt-specific core microbiota resides in the mouse colon. MBio 3:116–112. CrossRefGoogle Scholar
  49. Phillips I, Casewell M, Cox T, De Groot B, Friis C, Jones R, Nightingale C, Preston R, Waddell J (2004) Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother 53:28–52. CrossRefPubMedGoogle Scholar
  50. Repaske DR, Adler J (1981) Change in intracellular pH of Escherichia coli mediates the chemotactic response to certain attractants and repellents. J Bacteriol 145:1196–1208. doi: 0021-9193/81/031196-13$02.00/0PubMedPubMedCentralGoogle Scholar
  51. Ricke SC (2003) Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult Sci 82:632–639. CrossRefPubMedGoogle Scholar
  52. Roy CC, Kien CL, Bouthillier L, Levy E (2006) Short-chain fatty acids: ready for prime time? Nutr Clin Pract 21:351–366. CrossRefPubMedGoogle Scholar
  53. Salehizadeh H, Van Loosdrecht MC (2004) Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol Adv 22:261–279. CrossRefPubMedGoogle Scholar
  54. Shivakumar S (2013) Poly-β-hydroxybutyrate (PHB) Depolymerase from Fusarium solani Thom. J Chemother 2013:406386. CrossRefGoogle Scholar
  55. Situmoranga ML, De Schryver P, Dierckens K, Bossiera P (2016) Effect of poly-β-hydroxybutyrate on growth and disease resistance of Nile tilapiaOreochromis niloticus juveniles. Vet Microbiol 182:44–49. CrossRefGoogle Scholar
  56. Srividya S (2011) Production of PHB from lactose and whey by Bacillus thuringiensis IAM 12077. Res J Biotech 6:12–18Google Scholar
  57. Sugunaa P, Binuramesh C, Abirami P, Saranya V, Poornima K, Rajeswari V, Shenbagarathai R (2014) Immunostimulation by poly-β hydroxybutyrate–hydroxyvalerate (PHB–HV) from Bacillus thuringiensis in Oreochromis mossambicus. Fish Shellfish Immunol 36:90–97. CrossRefGoogle Scholar
  58. Sui L, Liu Y, Sun H, Wille M, Bossier P, De Schryver P (2012) The effect of poly-β-hydroxybutyrate on the performance of Chinese mitten crab (Eriocheir sinensis Milne-Edwards) zoealarvae. Aquac Res:1–8. CrossRefGoogle Scholar
  59. Sunkara LT, Achanta M, Schreiber NB, Bommineni YR, Dai G, Jiang W (2011) Butyrate enhances disease resistance of chickens by inducing antimicrobial host defense peptide gene expression. PLoS One 6:e27225. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sunkara LT, Jiang W, Zhang G (2012) Modulation of antimicrobial host defence peptide gene expression by free fatty acids. PLoS One 7:e49558. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Termén S, Tollin M, Rodriguez E, Sveinsdóttir SH, Jóhannesson B, Cederlund A (2008) PU.1 and bacterial metabolites regulate the human gene CAMP encoding antimicrobial peptide LL-37 in colon epithelial cells. Mol Immunol 45:3947–3955. CrossRefPubMedGoogle Scholar
  62. Thai TQ, Wille M, Garcia-Gonzalez L, Sorgeloos P, Bossier P, De Schryver P (2014) Poly-ß-hydroxybutyrate content and dose of the bacterial carrier for Artemia enrichment determine the performance of giant freshwater prawn larvae. Appl Microbiol Biotechnol 98:5205–5215. CrossRefPubMedGoogle Scholar
  63. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61:364–371. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Van Immerseel F, De Buck J, Pasmans F, Velge P, Bottreau E, Fievez V (2003) Invasion of Salmonella enteritidis in avian intestinal epithelial cells in vitro is influenced by short-chain fatty acids. Int J Food Microbiol 85:237–248. CrossRefPubMedGoogle Scholar
  65. Van Immerseel F, Boyen F, Gantois I, Timbermont L, Bohez L, Pasmans F, Haesebrouck F, Ducatelle R (2005) Supplementation of coated butyric acid in the feed reduces colonization and shedding of Salmonella in poultry. Poult Sci 84:1851–1856. CrossRefPubMedGoogle Scholar
  66. Van Immerseel F, Russell JB, Flythe MD, Gantois I, Timbermont L, Pasmans F (2006) The use of organic acids to combat Salmonella in poultry: a mechanistic explanation of the efficacy. Avian Pathol 35:182–188. CrossRefPubMedGoogle Scholar
  67. Walter J Ley R (2011) The human gut microbiome: ecology and recent evolutionary changes. In: Gottesman S Harwood CS (ed) Annual review of microbiology. Vol. 65, pp 411–429CrossRefGoogle Scholar
  68. Weiner N, Draskoczy P (1961) The effects of organic acids on the oxidative metabolism of intact and disrupted E. coli. Pharmacolo Exp Ther 132:299–305. PubMed: 13783909 Google Scholar
  69. Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40:235–243. PMID: 16633129CrossRefGoogle Scholar
  70. Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T, Kedzierski RM (2004) Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci U S A 101:1045–1050. CrossRefPubMedPubMedCentralGoogle Scholar
  71. Yu J, Chen L (2005) Kinetics and mechanism of the monomeric products from abiotic hydrolysis of poly[(R)-3- hydroxybuyrate] under acidic and alkaline conditions. Polym Degrad Stab 89:289–299. CrossRefGoogle Scholar
  72. Yu J, Plackett D, Chen LXL (2005) Kinetics and mechanism of the monomeric products from abiotic hydrolysis of poly[(R)-3-hydroxybutyrate] under acidic and alkaline conditions. Polym Degrad Stab 89:289–299. CrossRefGoogle Scholar
  73. Zhao P, Lu Z, Strand MR, Jianf H (2011) Antiviral, anti-parasitic, and cytotoxic effects of 5,6-dihydroxyidole (DHI), a reactive compound generated by phenoloxidase during insect immune response. Insect Biochem Mol Biol 41:645–652. CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zimmerman MA, Singh N, Martin PM, Thangaraju M, Ganapathy V, Waller JL (2012) Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells. Am J Physiol Gastrointest Liver Physiol 302:1405–1415. CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Microbiology, School of Sciences (SoS) Centre for PG StudiesJain UniversityBangaloreIndia

Personalised recommendations