CH4-Based Polyhydroxyalkanoate Production: A Step Further Towards a Sustainable Bioeconomy

  • Juan C. López
  • Yadira Rodríguez
  • Víctor Pérez
  • Raquel Lebrero
  • Raúl MuñozEmail author


Methane, a near-term climate forcer exhibiting a global warming capacity 90-fold higher compared to carbon dioxide on a 10-year horizon, is the second most prevalent greenhouse gas (GHG) within the global GHG inventory. Both physical/chemical and biological technologies are available for the treatment of CH4 emissions, the later also allowing for the production of high-added value products such as polyhydroxyalkanoates (PHAs) at significantly lower raw material costs. Among CH4 biotechnologies, turbulent contactors such as stirred tank reactors or bubble column bioreactors have been the most employed for the methanotrophic production of PHAs under nutrient-limited conditions. However, the moderate biomass productivities achieved at the expense of high energy consumption in these systems has headed the most recent research towards the development of new bioreactor configurations and the implementation of strategies to enhance CH4 mass transfer, such as the internal gas recycling or the use of non-aqueous phases. Also, the specificity of type II methanotrophs to accumulate these bioproducts, mainly as poly-3-hydroxybutyrate (PHB), has stimulated the development of novel enrichment procedures based on modifications in the nitrogen source and concentration, the oxygen content, the pH and the composition of micronutrients (e.g. Cu2+) to effectively select this type of methanotrophs. Finally, current research is focused on the use of co-substrates during methanotrophic cultivation to increase PHA yields and modify the composition of the biocomposite, thus enhancing the thermal and mechanical properties of the product and boosting its widespread production at industrial-scale.


Bioconversion Biopolymer Bioreactor Methane Methanotroph PHA PHB PHV 


  1. AlSayed A, Fergala A, Khattab S, Eldyasti A (2018a) Kinetics of type I methanotrophs mixed culture enriched from waste activated sludge. Biochem Eng J 132:60–67. CrossRefGoogle Scholar
  2. AlSayed A, Fergala A, Khattab S, ElSharkawy A, Eldyasti A (2018b) Optimization of methane bio-hydroxylation using waste activated sludge mixed culture of type I methanotrophs as biocatalyst. Appl Energ 211:755–763. CrossRefGoogle Scholar
  3. Amaral JA, Knowles R (1995) Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol Lett 126:215–220. CrossRefGoogle Scholar
  4. Anthony C (2011) How half a century of research was required to understand bacterial growth on C1 and C2 compounds; the story of the serine cycle and the ethylmalonyl-CoA pathway. Sci Prog 94:109–137. CrossRefPubMedGoogle Scholar
  5. Asenjo JA, Suk JS (1986) Microbial conversion of methane into poly-β-hydroxybutyrate (PHB): growth and intracellular product accumulation in a type II methanotroph. J Ferment Technol 64:271–278. CrossRefGoogle Scholar
  6. Avalos-Ramirez A, Jones JP, Heitz M (2012) Methane treatment in biotrickling filters packed with inert materials in presence of a non-ionic surfactant. J Chem Technol Biotechnol 87:848–853. CrossRefGoogle Scholar
  7. Bédard C, Knowles R (1989) Physiology, biochemistry and specific inhibitors of CH4, NH4 and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53:68–84PubMedPubMedCentralGoogle Scholar
  8. Bender M, Conrad R (1995) Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biol Biochem 27:1517–1527. CrossRefGoogle Scholar
  9. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2016) The main characteristics, properties, improvements, and market data of polyhydroxyalkanoates. In: Thakur VK, Thakur MK (eds) Handbook of sustainable polymers: processing and applications, 1st edn. Pan Stanford Publishing Pte. Ltd., Boca Ratón, pp 899–928. isbn:978-9-814-61353-8CrossRefGoogle Scholar
  10. Cai C, Hu S, Guo J, Shi Y, Xie G-J, Yuan Z (2015) Nitrate reduction by denitrifying anaerobic methane oxidizing microorganisms can reach a practically useful rate. Water Res 87:211–217. CrossRefPubMedGoogle Scholar
  11. Cal AJ, Sikkema WD, Ponce MI, Franqui-Villanueva D, Riiff TJ, Orts WJ, Pieja AJ, Lee CC (2016) Methanotrophic production of polyhydroxybutyrate-co-hydroxyvalerate with high hydroxyvalerate content. Int J Biol Macromol 87:302–307. CrossRefPubMedGoogle Scholar
  12. Cantera S, Estrada JM, Lebrero R, García-Encina PA, Muñoz R (2016a) Comparative performance evaluation of conventional and two-phase hydrophobic stirred tank reactors for methane abatement: mass transfer and biological considerations. Biotechnol Bioeng 113:1203–1212. CrossRefPubMedGoogle Scholar
  13. Cantera S, Lebrero R, García-Encina PA, Muñoz R (2016b) Evaluation of the influence of methane and copper concentration and methane mass transport on the community structure and biodegradation kinetics of methanotrophic cultures. J Environ Manag 171:11–20. CrossRefGoogle Scholar
  14. Cantera S, Frutos OD, López JC, Lebrero R, Muñoz R (2017) Technologies for the bio-conversion of GHGs into high added value products: current state and future prospects. In: Álvarez-Fernández R, Zubelzu S, Martínez R (eds) Carbon footprint and the industrial life cycle, from urban planning to recycling. Springer International Publishing, Cham, pp 359–388. isbn:978-3-319-54983-5CrossRefGoogle Scholar
  15. Cantera S, Muñoz R, Lebrero R, López JC, Rodríguez Y, García-Encina PA (2018) Technologies for the bioconversion of methane into more valuable products. Curr Opin Biotechnol 50:128–135. CrossRefPubMedGoogle Scholar
  16. Chen X, Liu Y, Peng L, Yuan Z, Ni BJ (2016) Model-based feasibility assessment of membrane biofilm reactor to achieve simultaneous ammonium, dissolved methane, and sulfide removal from anaerobic digestion liquor. Sci Rep 6:25114. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chidambarampadmavathy K, Karthikeyan OP, Huerlimann R, Maes GE, Heimann K (2017a) Response of mixed methanotrophic consortia to different methane to oxygen ratios. Waste Manag 61:220–228. CrossRefPubMedGoogle Scholar
  18. Chidambarampadmavathy K, Karthikeyan OP, Huerlimann R, Maes GE, Heimann K (2017b) Responses of mixed methanotrophic consortia to variable Cu2+/Fe2+ ratios. J Environ Manag 197:159–166. CrossRefGoogle Scholar
  19. Covarrubias-García I, Aizpuru A, Arriaga S (2017) Effect of the continuous addition of ozone on biomass clogging control in a biofilter treating ethyl acetate vapors. Sci Total Environ 584–585:469–475. CrossRefPubMedGoogle Scholar
  20. Crombie AT, Murrell JC (2014) Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature 510:148–151. CrossRefPubMedGoogle Scholar
  21. Cui M, Ma A, Qi H, Zhuang X, Zhuang G (2015) Anaerobic oxidation of methane: an “active” microbial process. MicrobiologyOpen 4:1–11. CrossRefPubMedGoogle Scholar
  22. Dessus B, Laponche B, Le Treut H (2009) The importance of a methane reduction policy for the 21st century. Accessed 23 Aug 2017
  23. Dunfield P, Knowles R (1995) Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol. Appl Environ Microbiol 61:3129–3135PubMedPubMedCentralGoogle Scholar
  24. Ebrahimi S, Kleerebezem R, Kreutzer MT, Kapteijn F, Moulijn JA, Heijnen JJ, van Loosdrecht MCM (2006) Potential application of monolith packed columns as bioreactors, control of biofilm formation. Biotechnol Bioeng 93:238–245. CrossRefPubMedGoogle Scholar
  25. Environmental Protection Agency (2017) Inventory of US greenhouse gas emissions and sinks: 1990–2015. Accessed 7 June 2017
  26. Estrada JM, Lebrero R, Quijano G, Kraakman NJR, Muñoz R (2012a) Strategies for odour control. In: Belgiorno V, Naddeo V, Zarra T (eds) Odour impact assessment handbook. Wiley, Hoboken, pp 85–124. isbn:978-1-119-96928-0CrossRefGoogle Scholar
  27. Estrada JM, Kraakman NJRB, Lebrero R, Muñoz R (2012b) A sensitivity analysis of process design parameters, commodity prices and robustness on the economics of odour abatement technologies. Biotechnol Adv 30(6):1354–1363. CrossRefPubMedGoogle Scholar
  28. Estrada JM, Dudek A, Muñoz R, Quijano G (2013a) Fundamental study on gas–liquid mass transfer in a biotrickling filter packed with polyurethane foam. J Chem Technol Biotechnol 89:1419–1424. CrossRefGoogle Scholar
  29. Estrada JM, Quijano G, Lebrero R, Muñoz R (2013b) Step-feed biofiltration: a low-cost alternative configuration for off-gas treatment. Water Res 47:4312–4321. CrossRefPubMedGoogle Scholar
  30. Estrada JM, Lebrero R, Quijano G, Pérez R, Figueroa-González I, García-Encina PA, Muñoz R (2014) Methane abatement in a gas-recycling biotrickling filter: evaluating innovative operational strategies to overcome mass transfer limitations. Chem Eng J 253:385–393. CrossRefGoogle Scholar
  31. European Environment Agency (2017) Annual European union greenhouse gas inventory 1990–2015 and inventory report 2017. Accessed 7 June 2017
  32. Eurostat Statistics Explained (2016) Natural gas price statistics. Accessed 8 June 2017
  33. Fergala A, AlSayed A, Eldyasti A (2017) Factors affecting the selection of PHB accumulating methanotrophs from waste activated sludge while utilizing ammonium as their nitrogen source. J Chem Technol Biot (In Press). CrossRefGoogle Scholar
  34. García-Pérez T, López JC, Passos F, Lebrero R, Revah S, Muñoz R (2018) Simultaneous methane abatement and PHB production by Methylocystis hirsuta in a novel gas-recycling bubble column bioreactor. Chem Eng J 334:691–697. CrossRefGoogle Scholar
  35. Glass JB, Orphan VJ (2012) Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Front Microbiol 3:61. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Graham DW, Chaudhary JA, Hanson RS, Arnold RG (1993) Factors affecting competition between type I and type II methanotrophs in two-organism, continuous-flow reactors. Microb Ecol 25:1–17. CrossRefPubMedGoogle Scholar
  37. Helm J, Wendlandt KD, Rogge G, Kappelmeyer U (2006) Characterizing a stable methane-utilizing mixed culture used in the synthesis of a high-quality biopolymer in an open system. J Appl Microbiol 101:387–395. CrossRefPubMedGoogle Scholar
  38. Helm J, Wendlandt KD, Jechorek M, Stottmeister U (2008) Potassium deficiency results in accumulation of ultra-high molecular weight poly-β-hydroxybutyrate in a methane-utilizing mixed culture. J Appl Microbiol 105:1054–1061. CrossRefPubMedGoogle Scholar
  39. Henckel T, Roslev P, Conrad R (2000) Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil. Environ Microbiol 2:666–679. CrossRefPubMedGoogle Scholar
  40. Heyer J, Berger U, Hardt M, Dunfield PF (2005) Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hyper-saline lakes of Crimea. Int J Syst Evol Microbiol 55:1817–1826. CrossRefPubMedGoogle Scholar
  41. Intergovernmental Panel on Climate Change (2013) Climate change 2013, the physical science basis. Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Accessed 23 Aug 2017
  42. Intergovernmental Panel on Climate Change (2014) Fifth assessment report: climate change 2014. Synthesis report. Accessed 7 June 2017
  43. Jin Y, Veiga MC, Kennes C (2006) Development of a novel monolith-bioreactor for the treatment of VOC-polluted air. Environ Tech 27:1271–1277. CrossRefGoogle Scholar
  44. Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Lamb A, Nagana-Gowda GA, Raftery D, Fu Y, Bringel F, Vuilleumier S, Beck DAC, Trotsenko YA, Khmelenina VN, Lidstrom ME (2013) Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun 4:2785. CrossRefPubMedGoogle Scholar
  45. Karthikeyan OP, Chidambarampadmavathy K, Cirés S, Heimann K (2015a) Review of sustainable methane mitigation and biopolymer production. Crit Rev Environ Sci Technol 45:1579–1610. CrossRefGoogle Scholar
  46. Karthikeyan OP, Chidambarampadmavathy K, Nadarajan S, Lee PKH, Heimann K (2015b) Effect of CH4/O2 ratio on fatty acid profile and polyhydroxybutyrate content in a heterotrophic-methanotrophic consortium. Chemosphere 141:235–242. CrossRefPubMedGoogle Scholar
  47. Kennelly C, Clifford E, Gerrity S, Walsh R, Rodgers M, Collins G (2012) A horizontal flow biofilm reactor (HFBR) technology for the removal of methane and hydrogen sulphide at low temperatures. Water Sci Technol 66:1997–2006. CrossRefPubMedGoogle Scholar
  48. Kennelly C, Gerrity S, Collins G, Clifford E (2014) Liquid phase optimisation in a horizontal flow biofilm reactor (HFBR) technology for the removal of methane at low temperatures. Chem Eng J 242:144–154. CrossRefGoogle Scholar
  49. Khosravi-Darani K, Mokhtari ZB, Amai T, Tanaka K (2013) Microbial production of poly(hydroxybutyrate) from C1 carbon sources. Appl Microbiol Biotechnol 97:1407–1424. CrossRefPubMedGoogle Scholar
  50. Knief C (2015) Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol 6:1346. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kraakman NJR, Rocha-Rios J, van Loosdrecht MCM (2011) Review of mass transfer aspects for biological gas treatment. Appl Microbiol Biotechnol 91:873–886. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kumar A, Dewulf J, van Langenhove H (2008) Membrane-based biological waste gas treatment. Chem Eng J 136:82–91. CrossRefGoogle Scholar
  53. Lebrero R, Hernández L, Pérez R, Estrada JM, Muñoz R (2015) Two-liquid phase partitioning biotrickling filters for methane abatement: exploring the potential of hydrophobic methanotrophs. J Environ Manag 151:124–131. CrossRefGoogle Scholar
  54. Lebrero R, López JC, Lehtinen I, Pérez R, Quijano G, Muñoz R (2016) Exploring the potential of fungi for methane abatement: performance evaluation of a fungal-bacterial biofilter. Chemosphere 144:97–106. CrossRefPubMedGoogle Scholar
  55. Levett I, Birkett G, Davies N, Bell A, Langford A, Laycock B, Lant P, Pratt S (2016) Techno-economic assessment of poly-3-hydroxybutyrate (PHB) production from methane – the case of thermophilic bioprocessing. J Environ Chem Eng 4:3724–3733. CrossRefGoogle Scholar
  56. López JC, Quijano G, Souza TSO, Estrada JM, Lebrero R, Muñoz R (2013) Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: state of the art and challenges. Appl Microbiol Biotechnol 97:2277–2303. CrossRefPubMedGoogle Scholar
  57. López JC, Quijano G, Pérez R, Muñoz R (2014) Assessing the influence of CH4 concentration during culture enrichment on the biodegradation kinetics and population structure. J Environ Manag 146:116–123. CrossRefGoogle Scholar
  58. López JC, Porca E, Collins G, Pérez R, Rodríguez-Alija A, Muñoz R, Quijano G (2017) Biogas-based denitrification in a biotrickling filter: influence of nitrate concentration and hydrogen sulfide. Biotechnol Bioeng 114:665–673. CrossRefPubMedGoogle Scholar
  59. López JC, Merchán L, Lebrero R, Muñoz R (2018a) Feast-famine biofilter operation for methane mitigation. J Clean Prod 170:108–118. CrossRefGoogle Scholar
  60. López JC, Porca E, Collins G, Clifford E, Quijano G, Muñoz R (2018b) Ammonium influences kinetics and structure of methanotrophic bacteria (submitted for publication) Google Scholar
  61. López JC, Arnáiz E, Merchán L, Lebrero R, Muñoz R (2018c) Biogas-based polyhydroxyalkanoates production by Methylocystis hirsuta: a step further in anaerobic digestion biorefineries. Chem Eng J 333:529–536. CrossRefGoogle Scholar
  62. Ménard C, Avalos-Ramirez A, Nikiema J, Heitz M (2012) Biofiltration of methane and trace gases from landfills: a review. Environ Rev 20:40–53. CrossRefGoogle Scholar
  63. Muñoz R, Souza TSO, Glittmann L, Pérez R, Quijano G (2013) Biological anoxic treatment of O2-free VOC emissions from the petrochemical industry: a proof of concept study. J Hazard Mater 260:442–450. CrossRefPubMedGoogle Scholar
  64. Muñoz R, Malhautier L, Fanlo JL, Quijano G (2015) Biological technologies for the treatment of atmospheric pollutants. Int J Environ Anal Chem 95:950–967. CrossRefGoogle Scholar
  65. Murrell JC, Gilbert B, McDonald IR (2000) Molecular biology and regulation of methane monooxygenase. Arch Microbiol 173:325–332. CrossRefPubMedGoogle Scholar
  66. Myung J (2016) Microbial enrichment enabling stable production of poly(3-hydroxybutyrate) using pipeline natural gas. In: Recovery of resources and energy using methane-utilizing bacteria: synthesis and regeneration of biodegradable, tailorable bioplastics and production of nitrous oxide. Dissertation, Stanford University (California, U.S.)Google Scholar
  67. Myung J, Galega WM, van Nostrand JD, Yuan T, Zhou J, Criddle CS (2015a) Long-term cultivation of a stable Methylocystis-dominated methanotrophic enrichment enabling tailored production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Bioresour Technol 198:811–818. CrossRefPubMedGoogle Scholar
  68. Myung J, Wang Z, Yuan T, Zhang P, Van Nostrand JD, Zhou J, Criddle CS (2015b) Production of nitrous oxide from nitrite in stable type II methanotrophic enrichments. Environ Sci Technol 49:10969–10975. CrossRefPubMedGoogle Scholar
  69. Myung J, Kim M, Pan M, Criddle CS, Tang SKY (2016a) Low energy emulsion-based fermentation enabling accelerated methane mass transfer and growth of poly(3-hydroxybutyrate)-accumulating methanotrophs. Bioresour Technol 207:302–307. CrossRefPubMedGoogle Scholar
  70. Myung J, Flanagan JCA, Waymouth RM, Criddle CS (2016b) Methane or methanol-oxidation dependent synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by obligate type II methanotrophs. Process Biochem 51:561–567. CrossRefGoogle Scholar
  71. Myung J, Flanagan JCA, Waymouth RM, Criddle CS (2017) Expanding the range of polyhydroxyalkanoates synthesized by methanotrophic bacteria through the utilization of omega-hydroxyalkanoate co-substrates. AMB Express 7:118. CrossRefPubMedPubMedCentralGoogle Scholar
  72. National Oceanic and Atmospheric Administration (2017) National centers for environmental information, state of the climate: global climate report for annual 2016. Accessed 8 June 2017
  73. Nienow AW (2014) Stirring and stirred-tank reactors. Chem Ing Tech 86:2063–2074. CrossRefGoogle Scholar
  74. Nikiema J, Brzezinski R, Heitz M (2007) Elimination of methane generated from landfills by biofiltration: a review. Rev Environ Sci Biotechnol 6:261–284. CrossRefGoogle Scholar
  75. Nikodinovic-Runic J, Guzik M, Kenny ST, Babu R, Werker A, O Connor KE (2013) Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria. In: Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 84. Academic, Burlington, pp 139–200. isbn:978-0-12-407673-0CrossRefGoogle Scholar
  76. Nyerges G, Han SK, Stein LY (2010) Effects of ammonium and nitrite on growth and competitive fitness of cultivated methanotrophic bacteria. Appl Environ Microbiol 76:5648–5651. CrossRefPubMedPubMedCentralGoogle Scholar
  77. Oliver JP, Schilling JS (2016) Capture of methane by fungi: evidence from laboratory-scale biofilter and chromatographic isotherm studies. T ASABE 59:1791–1801. CrossRefGoogle Scholar
  78. Pawlowska M (2014) Biological oxidation as a method for mitigation of LFG emission. In: Pawlowska M (ed) Mitigation of landfill gas emissions. CRC Press, London, pp 59–101. isbn:9780415630771CrossRefGoogle Scholar
  79. Petersen LAH, Villadsen J, Jørgensen SB, Gernaey K (2017) Mixing and mass transfer in a pilot scale U-loop bioreactor. Biotechnol Bioeng 114:344–354. CrossRefPubMedGoogle Scholar
  80. Pieja AJ, Rostkowski KH, Criddle CS (2011a) Distribution and selection of poly-3-hydroxybutyrate production capacity in methanotrophic proteobacteria. Microb Ecol 62:564–573. CrossRefPubMedGoogle Scholar
  81. Pieja AJ, Sundstrom ER, Criddle CS (2011b) Poly-3-hydroxybutyrate metabolism in the type II methanotroph Methylocystis parvus OBBP. Appl Environ Microbiol 77:6012–6019. CrossRefPubMedPubMedCentralGoogle Scholar
  82. Pieja AJ, Sundstrom ER, Criddle CS (2012) Cyclic, alternating methane and nitrogen limitation increases PHB production in a methanotrophic community. Bioresour Technol 107:385–392. CrossRefPubMedGoogle Scholar
  83. Pieja AJ, Morse MC, Cal AJ (2017) Methane to bioproducts: the future of the bioeconomy? Curr Opin Chem Biol 41:123–131. CrossRefPubMedGoogle Scholar
  84. Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, Op den Camp HJ (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450:874–878. CrossRefPubMedGoogle Scholar
  85. Rocha-Rios J, Bordel S, Hernández S, Revah S (2009) Methane degradation in two-phase partition bioreactors. Chem Eng J 152:289–292. CrossRefGoogle Scholar
  86. Rocha-Rios J, Muñoz R, Revah S (2010) Effect of silicone oil fraction and stirring rate on methane degradation in a stirred tank reactor. J Chem Technol Biotechnol 85:314–319. CrossRefGoogle Scholar
  87. Rocha-Rios J, Quijano G, Thalasso F, Revah S, Muñoz R (2011) Methane biodegradation in a two-phase partition internal loop airlift reactor with gas recirculation. J Chem Technol Biotechnol 86:353–360. CrossRefGoogle Scholar
  88. Rocha-Rios J, Kraakman NJR, Kleerebezem R, Revah S, Kreutzer MT, van Loosdrecht MCM (2013) A capillary bioreactor to increase methane transfer and oxidation through Taylor flow formation and transfer vector addition. Chem Eng J 217:91–98. CrossRefGoogle Scholar
  89. Rostkowski KH, Criddle CS, Lepech MD (2012) Cradle-to-gate life cycle assessment for a cradle-to-cradle cycle: biogas-to-bioplastic (and back). Environ Sci Technol 46:9822–9829. CrossRefPubMedGoogle Scholar
  90. Rostkowski KH, Pfluger AR, Criddle CS (2013) Stoichiometry and kinetics of the PHB-producing type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP. Bioresour Technol 132:71–77. CrossRefPubMedGoogle Scholar
  91. Sánchez A, Rodríguez-Hernández L, Buntner D, Esteban-García AL, Tejero I, Garrido JM (2016) Denitrification coupled with methane oxidation in a membrane bioreactor after methanogenic pre-treatment of wastewater. J Chem Technol Biotechnol 91:2950–2958. CrossRefGoogle Scholar
  92. Sander R (2015) Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos Chem Phys 15:4399–4981. CrossRefGoogle Scholar
  93. Sazinsky MH, Lippard SJ (2015) Methane monooxygenase: functionalizing methane at iron and copper. Met Ions Life Sci 15:205–256. CrossRefPubMedGoogle Scholar
  94. Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531. CrossRefPubMedGoogle Scholar
  95. Shah NN, Hanna ML, Taylor RT (1996) Batch cultivation of Methylosinus trichosporium OB3b: V. Characterization of poly-beta-hydroxybutyrate production under methane-dependent growth conditions. Bioeng Biotechnol 49:161–171.<161::AID-BIT5>3.0.CO;2-O CrossRefGoogle Scholar
  96. Shi Y, Hu S, Lou J, Lu P, Keller J, Yuan Z (2013) Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor. Environ Sci Technol 47:11577–11583. CrossRefPubMedGoogle Scholar
  97. Stone KA, Hilliard MV, He QP, Wang J (2017) A mini review on bioreactor configurations and gas transfer enhancements for biochemical methane conversion. Biochem Eng J 128:83–92. CrossRefGoogle Scholar
  98. Strong PJ, Xie S, Clarke WP (2015) Methane as a resource: can the methanotrophs add value? Environ Sci Technol 49:4001–4018. CrossRefPubMedGoogle Scholar
  99. Strong PJ, Kalyuzhnaya M, Silverman J, Clarke WP (2016a) A methanotroph-based biorefinery: potential scenarios for generating multiple products from a single fermentation. Bioresour Technol 215:314–323. CrossRefPubMedGoogle Scholar
  100. Strong PJ, Laycock B, Mahamud SNS, Jensen PD, Lant PA, Tyson G, Pratt S (2016b) The opportunity for high-performance biomaterials from methane. Microorganisms 4:11. CrossRefPubMedCentralGoogle Scholar
  101. Sun FY, Dong WY, Shao MF, Lv XM, Li J, Peng LY, Wang HJ (2013) Aerobic methane oxidation coupled to denitrification in a membrane biofilm reactor: treatment performance and the effect of oxygen ventilation. Bioresour Technol 145:2–9. CrossRefPubMedGoogle Scholar
  102. Sundstrom E, Criddle CS (2015) Optimization of methanotrophic growth and production of poly(3-hydroxybutyrate) in a high-throughput microbioreactor system. Appl Environ Microbiol 81:4767–4773. CrossRefPubMedPubMedCentralGoogle Scholar
  103. Tan GYA, Chen CL, Li L, Ge L, Wang L, Razaad IMN, Li Y, Zhao L, Mo Y, Wang JY (2014) Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polym Basel 6:706–754. CrossRefGoogle Scholar
  104. United Nations Framework Convention on Climate Change (2013) Report of the conference of the parties serving as the meeting of the parties to the Kyoto protocol on its eighth session, held in Doha from 26 November to 8 December 2012. Accessed 10 June 2017
  105. Van der Ha D, Nachtergaele L, Kerckhof FM, Rameiyanti D, Bossier P, Verstraete W, Boon N (2012) Conversion of biogas to bioproducts by algae and methane oxidizing bacteria. Environ Sci Technol 46:13425–13431. CrossRefPubMedGoogle Scholar
  106. Van Teeseling MC, Pol A, Harhangi HR, van der Zwart S, Jetten MSM, Op den Camp HJ, van Niftrik L (2014) Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov. Appl Environ Microbiol 80:6782–6791. CrossRefPubMedPubMedCentralGoogle Scholar
  107. Vestman J, Liljemark S, Svensson M (2014) Cost benchmarking of the production and distribution of biomethane/CNG in Sweden. Accessed 8 June 2017
  108. Wendlandt KD, Jechorek M, Helm J, Stottmeister U (2001) Producing poly-3-hydroxybutyrate with a high molecular mass from methane. J Biotechnol 86:127–133. CrossRefPubMedGoogle Scholar
  109. Yazdian F, Shojaosadati S, Nosrati M, Pesaran M, Ebrahim V-F (2012) Mixing studies in loop bioreactors for production of biomass from natural gas. Iran J Chem Chem Eng 31:91–101Google Scholar
  110. Yu Y, Ramsay JA, Ramsay BA (2006) On-line estimation of dissolved methane concentration during methanotrophic fermentations. Biotechnol Bioeng 95:788–793. CrossRefPubMedGoogle Scholar
  111. Zhang Y, Xin J, Chen L, Song H, Xia C (2008) Biosynthesis of poly-3-hydroxybutyrate with a high molecular weight by methanotroph from methane and methanol. J Nat Gas Chem 17:103–109. CrossRefGoogle Scholar
  112. Zhang T, Zhou J, Wang X, Zhang Y (2016) Coupled effects of methane monooxygenase and nitrogen source on growth and poly-β-hydroxybutyrate (PHB) production of Methylosinus trichosporium OB3b. J Environ Sci 52:49–57. CrossRefGoogle Scholar
  113. Zhang T, Wang X, Zhou J, Zhang Y (2017) Enrichments of methanotrophic-heterotrophic cultures with high poly-β-hydroxybutyrate (PHB) accumulation capacities. J Environ Sci (In Press). CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Juan C. López
    • 1
  • Yadira Rodríguez
    • 1
  • Víctor Pérez
    • 1
  • Raquel Lebrero
    • 1
  • Raúl Muñoz
    • 1
    Email author
  1. 1.Department of Chemical Engineering and Environmental Technology, School of Industrial EngineeringsUniversity of ValladolidValladolidSpain

Personalised recommendations