Advertisement

Design of Ultra-Wideband (UWB) Horn Antenna for Non-destructive Fruit Quality Monitoring

  • Nurhafizah Abu Talip @ YusofEmail author
  • Syamimi Mardiah Shaharum
  • Ahmad Afif Mohd Faudzi
  • Sabira Khatun
  • Mohamad Shaiful Abdul Karim
  • Siti Fatihah Hazali
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 538)

Abstract

This paper presents an ultra-wideband pyramidal horn antenna for non-destructive fruit quality monitoring system. The proposed design simulation operates in the frequency range of 3.1–10.6 GHz. The antenna is supported by the rectangular waveguide feeder. The design is chosen based on the ability of the antenna to transmit and receive signal with wide bandwidth, high directivity and gain, and low Voltage Standing Wave Ratio. The antenna is designed and simulated by using Computer Simulation Technology Microwave Studio. The simulation result also validated by the experimental result. The simulation result shows that the proposed UWB pyramidal horn antenna exhibits small return loss with low VSWR as well as good radiation pattern in the frequency range of 3.1–10.6 GHz.

Keywords

Ultra-wideband antenna Horn antenna Fruit quality Non-destructive 

Notes

Acknowledgements

This work is supported by Universiti Malaysia Pahang Internal Grant of RDU1703236.

References

  1. 1.
    Karli, R., Ammor, H., Shubair, R.M., AlHajri, M.I., Alkurd, R., Hakam, A.: Miniature planar ultra-wide-band microstrip antenna for breast cancer detection. In: Microwave Symposium (MMS), 2016 16th Mediterranean. IEEE, pp. 1–4 (2016)Google Scholar
  2. 2.
    Karim, M.S.B.A., Abu Talip Yusof, N., Kitazawa, T.: Scattering analysis of rectangular cavity with input and output waveguides and its application to material characterization. In: 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpar, pp. 588–591 (2017)Google Scholar
  3. 3.
    Karim, M.S.B.A., Konishi, Y., Kitazawa, T.: Robustness analysis of simultaneous determination method of complex permittivity and permeability. In: 2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO), Pavia, pp. 1–4 (2014)Google Scholar
  4. 4.
    Jha, S.N., et al.: Nondestructive prediction of maturity of mango using near infrared spectroscopy. J. Food Eng. 124, 152–157 (2014)CrossRefGoogle Scholar
  5. 5.
    Chen, J., et al.: Temperature-dependent dielectric and thermal properties of whey protein gel and mashed potato. Trans. Am. Soc. Agric. Biol. Eng. 56(6), 1457–1467 (2013)Google Scholar
  6. 6.
    Nelson, S.O., Trabelsi, S.: Historical development of grain moisture measurement and other food quality sensing through electrical properties. IEEE Instrum. Meas. Mag. 19(1), 16–23 (2016)CrossRefGoogle Scholar
  7. 7.
    Karim, M.S.B.A., Konishi, Y., Harafuji, K., Kitazawa, T.: Determination of complex permittivities of layered materials using waveguide measurements. IEEE Trans. Microw. Theory Tech. 62(9), 2140–2148 (2014)CrossRefGoogle Scholar
  8. 8.
    Kim, S., Novotny, D., Gordon, J.A., Guerrieri, J.R.: A free-space measurement method for the low-loss dielectric characterization without prior need for sample thickness data. IEEE Trans. Antennas Propag. 64(9), 3869–3879 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Othman, M.A., Aziz, M.Z.A.A., Saysoo, N., Othman, A.R.: Development of ultra-wideband (UWB) horn antenna using approximation method. In: IEEE Symposium on Wireless Technology and Applications (ISWTA), pp. 276–279 (2012)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Nurhafizah Abu Talip @ Yusof
    • 1
    Email author
  • Syamimi Mardiah Shaharum
    • 1
  • Ahmad Afif Mohd Faudzi
    • 1
  • Sabira Khatun
    • 1
  • Mohamad Shaiful Abdul Karim
    • 1
  • Siti Fatihah Hazali
    • 1
  1. 1.Faculty of Electrical and Electronics EngineeringUniversiti Malaysia PahangPekanMalaysia

Personalised recommendations