Nanostructured Materials and Their Biomedical Application

  • Sudip Mondal
  • Junghwan OhEmail author


Nanoscience and nanotechnology are at the forefront of current research. The advances of nanostructure-based therapeutics, sensors, diagnosis, and imaging facility have an incredible interest and tremendous potential for nanomedicine and biomedical application. Nanotechnology has shown non-exhaustive applications including diagnosis, imaging, therapy, drug delivery, implants, enzyme mimetic, tissue engineering, and many more. This book chapter will provide a broad and in-depth coverage of the nanostructured materials and their significant applications. The proposed book chapter contains six sections but not exhaustive on varying features of nano-structured materials. This chapter’s significant major perception helps to understand the readers who might get a concept regarding nanostructured materials. This book chapter will definitely be useful to the beginners and also for the experienced personnel in the field of nanomaterials.

Graphical Abstract

Nanostructured materials and their multifunctional biomedical application


Nanomaterials Nanostructured materials Metallic nanoparticles Ceramics nanoparticles Nanocomposites Biomedical applications Drug delivery Photothermal therapy Bio-imaging Contrast agents 


  1. Afergan E, Epstein H, Dahan R, Koroukhov N, Rohekar K, Danenberg HD, Golomb G (2008) Delivery of serotonin to the brain by monocytes following phagocytosis of liposomes. J Control Release 132:84–90PubMedCrossRefGoogle Scholar
  2. Arayachukeat S, Wanichwecharungruang SP, Tree-Udom T (2011) Retinyl acetate-loaded nanoparticles: dermal penetration and release of the retinyl acetate. Int J Pharm 404:281–288PubMedCrossRefGoogle Scholar
  3. Arias JL, López-Viota M, Delgado ÁV, Ruiz MA (2010) Iron/ethylcellulose (core/shell) nanoplatform loaded with 5-fluorouracil for cancer targeting. Colloids Surf B: Biointerfaces 77:111–116PubMedCrossRefGoogle Scholar
  4. Attama A, Schicke B, Paepenmüller T, Müller-Goymann C (2007) Solid lipid nanodispersions containing mixed lipid core and a polar heterolipid: characterization. Eur J Pharm Biopharm 67:48–57PubMedCrossRefGoogle Scholar
  5. Bajpai A, Gupta R (2011) Magnetically mediated release of ciprofloxacin from polyvinyl alcohol based superparamagnetic nanocomposites. J Mater Sci Mater Med 22:357–369PubMedCrossRefGoogle Scholar
  6. Bharathiraja S, Bui NQ, Manivasagan P, Moorthy MS, Mondal S, Seo H, Phuoc NT, Phan TTV, Kim H, Lee KD (2018) Multimodal tumor-homing chitosan oligosaccharide-coated biocompatible palladium nanoparticles for photo-based imaging and therapy. Sci Rep 8:500PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bigi A, Boanini E, Rubini K (2004) Hydroxyapatite gels and nanocrystals prepared through a sol–gel process. J Solid State Chem 177:3092–3098CrossRefGoogle Scholar
  8. Biswas S, Dodwadkar NS, Deshpande PP, Torchilin VP (2012) Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J Control Release 159:393–402PubMedPubMedCentralCrossRefGoogle Scholar
  9. Blessing T, Kursa M, Holzhauser R, Kircheis R, Wagner E (2001) Different strategies for formation of pegylated EGF-conjugated PEI/DNA complexes for targeted gene delivery. Bioconjug Chem 12:529–537PubMedCrossRefGoogle Scholar
  10. Brannon-Peppas L, Blanchette JO (2012) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 64:206–212CrossRefGoogle Scholar
  11. Chakravarty P, Marches R, Zimmerman NS, Swafford AD-E, Bajaj P, Musselman IH, Pantano P, Draper RK, Vitetta ES (2008) Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. Proc Natl Acad Sci 105:8697PubMedCrossRefGoogle Scholar
  12. Chari RV (1998) Targeted delivery of chemotherapeutics: tumor-activated prodrug therapy. Adv Drug Deliv Rev 31:89–104PubMedCrossRefGoogle Scholar
  13. Chen Q-R, Zhang L, Gasper W, Mixson AJ (2001) Targeting tumor angiogenesis with gene therapy. Mol Genet Metab 74:120–127PubMedCrossRefGoogle Scholar
  14. Chen Z, Pierre D, He H, Tan S, Pham-Huy C, Hong H, Huang J (2011) Adsorption behavior of epirubicin hydrochloride on carboxylated carbon nanotubes. Int J Pharm 405:153–161PubMedCrossRefGoogle Scholar
  15. Cheng L, Shen S, Shi S, Yi Y, Wang X, Song G, Yang K, Liu G, Barnhart TE, Cai W (2016) FeSe2-decorated Bi2Se3 nanosheets fabricated via cation exchange for chelator-free 64Cu-labeling and multimodal image-guided photothermal-radiation therapy. Adv Funct Mater 26:2185–2197PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cho JS, Kang YC (2008) Nano-sized hydroxyapatite powders prepared by flame spray pyrolysis. J Alloys Compd 464:282–287CrossRefGoogle Scholar
  17. Compton RG, Eklund JC, Marken F (1997) Sonoelectrochemical processes: a review. Electroanalysis 9:509–522CrossRefGoogle Scholar
  18. Davis ME, Chen Z, Shin DM (2010) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nanosci Technol A Collect Rev Nat J World Sci:239–250Google Scholar
  19. De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3:133PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dev A, Binulal N, Anitha A, Nair S, Furuike T, Tamura H, Jayakumar R (2010) Preparation of poly (lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohydr Polym 80:833–838CrossRefGoogle Scholar
  21. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494PubMedCrossRefGoogle Scholar
  22. Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J (2013) The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine 9:1–14PubMedCrossRefGoogle Scholar
  23. Fan W, Huang P, Chen X (2016) Overcoming the Achilles’ heel of photodynamic therapy. Chem Soc Rev 45:6488–6519PubMedCrossRefGoogle Scholar
  24. Gil PR, Hühn D, Loretta L, Sasse D, Parak WJ (2010) Nanopharmacy: Inorganic nanoscale devices as vectors and active compounds. Pharmacol Res 62:115–125CrossRefGoogle Scholar
  25. Gontero D, Lessard-Viger M, Brouard D, Bracamonte AG, Boudreau D, Veglia AV (2017) Smart multifunctional nanoparticles design as sensors and drug delivery systems based on supramolecular chemistry. Microchem J 130:316–328CrossRefGoogle Scholar
  26. Gu W, Wu C, Chen J, Xiao Y (2013) Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. Int J Nanomedicine 8:2305PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gulati S, Sachdeva M, Bhasin K (2018) Various synthetic routes for the preparation of nanoparticles. AIP Conf Proc, AIP Publishing:030215Google Scholar
  28. Hatakeyama H, Akita H, Kogure K, Oishi M, Nagasaki Y, Kihira Y, Ueno M, Kobayashi H, Kikuchi H, Harashima H (2007) Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Ther 14:68PubMedCrossRefGoogle Scholar
  29. Hayman ML (2009) The emerging product and patent landscape for nanosilver-containing medical devices. Nanotech L & Bus 6:148Google Scholar
  30. Holle L, Hicks L, Song W, Holle E, Wagner T, Yu X (2004) Bcl-2 targeting siRNA expressed by a T7 vector system inhibits human tumor cell growth in vitro. Int J Oncol 24:615–621PubMedPubMedCentralGoogle Scholar
  31. Hong H, Goel S, Zhang Y, Cai W (2011) Molecular imaging with nucleic acid aptamers. Curr Med Chem 18:4195–4205PubMedPubMedCentralCrossRefGoogle Scholar
  32. Hossen S, Hossain MK, Basher M, Mia M, Rahman M, Uddin MJ (2018) Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv ResGoogle Scholar
  33. Huang P, Gao Y, Lin J, Hu H, Liao H-S, Yan X, Tang Y, Jin A, Song J, Niu G (2015) Tumor-specific formation of enzyme-instructed supramolecular self-assemblies as cancer theranostics. ACS Nano 9:9517–9527PubMedPubMedCentralCrossRefGoogle Scholar
  34. Kaittanis C, Naser SA, Perez JM (2007) One-step, nanoparticle-mediated bacterial detection with magnetic relaxation. Nano Lett 7:380–383PubMedCrossRefPubMedCentralGoogle Scholar
  35. Karpov I, Ushakov A, Fedorov LY, Lepeshev A (2014) Method for producing nanomaterials in the plasma of a low-pressure pulsed arc discharge. Tech Phys 59:559–563CrossRefGoogle Scholar
  36. Kim JK, Choi SH, Kim CO, Park JS, Ahn WS, Kim CK (2003) Enhancement of polyethylene glycol (PEG)-modified cationic liposome-mediated gene deliveries: effects on serum stability and transfection efficiency. J Pharm Pharmacol 55:453–460PubMedCrossRefPubMedCentralGoogle Scholar
  37. Kim H, Mondal S, Jang B, Manivasagan P, Moorthy MS, Oh J (2018a) Biomimetic synthesis of metal–hydroxyapatite (Au-HAp, Ag-HAp, Au-Ag-HAp): Structural analysis, spectroscopic characterization and biomedical application. Ceram Int 44:20490–20500CrossRefGoogle Scholar
  38. Kim H, Mondal S, Bharathiraja S, Manivasagan P, Moorthy MS, Oh J (2018b) Optimized Zn-doped hydroxyapatite/doxorubicin bioceramics system for efficient drug delivery and tissue engineering application. Ceram Int 44:6062–6071CrossRefGoogle Scholar
  39. Kircheis R, Kichler A, Wallner G, Kursa M, Ogris M, Felzmann T, Buchberger M, Wagner E (1997) Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery. Gene Ther 4:409PubMedCrossRefPubMedCentralGoogle Scholar
  40. Klaus-Joerger T, Joerger R, Olsson E, Granqvist C-G (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15–20PubMedCrossRefPubMedCentralGoogle Scholar
  41. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495PubMedCrossRefPubMedCentralGoogle Scholar
  42. Lechuga LM, Tamayo J, Calle A, Domínguez C (2006) Nanobiosensors based on optoelectronic and nanomechanical transducers for genomic and proteomic applications. Revista mexicana de física 52:94–98Google Scholar
  43. Lee S, Cha EJ, Park K, Lee SY, Hong JK, Sun IC, Kim SY, Choi K, Kwon IC, Kim K (2008) A near-infrared-fluorescence-quenched gold-nanoparticle imaging probe for in vivo drug screening and protease activity determination. Angew Chem 120:2846–2849CrossRefGoogle Scholar
  44. Li M, Kim HS, Tian L, Yu MK, Jon S, Moon WK (2012a) Comparison of two ultrasmall superparamagnetic iron oxides on cytotoxicity and MR imaging of tumors. Theranostics 2:76PubMedPubMedCentralCrossRefGoogle Scholar
  45. Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012b) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41:2590–2605PubMedCrossRefPubMedCentralGoogle Scholar
  46. Li S, Wang Y, Gao C, Ge S, Yu J, Yan M (2015) “Signal-off” photoelectrochemical DNA sensing strategy based on target dependent DNA probe conformational conversion using CdS quantum dots sensitized TiO2 nanorods array as photoactive material. J Electroanal Chem 759:38–45CrossRefGoogle Scholar
  47. Liu J, Gong T, Fu H, Wang C, Wang X, Chen Q, Zhang Q, He Q, Zhang Z (2008) Solid lipid nanoparticles for pulmonary delivery of insulin. Int J Pharm 356:333–344PubMedCrossRefPubMedCentralGoogle Scholar
  48. Losic D, Yu Y, Aw MS, Simovic S, Thierry B, Addai-Mensah J (2010) Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles: toward magnetically guided drug microcarriers with biologically derived morphologies. Chem Commun 46:6323–6325CrossRefGoogle Scholar
  49. Lu Z, Yin Y (2012) Colloidal nanoparticle clusters: functional materials by design. Chem Soc Rev 41:6874–6887PubMedCrossRefPubMedCentralGoogle Scholar
  50. Lu S, Gao W, Gu HY (2008) Construction, application and biosafety of silver nanocrystalline chitosan wound dressing. Burns 34:623–628PubMedCrossRefPubMedCentralGoogle Scholar
  51. Manivasagan P, Bharathiraja S, Santha Moorthy M, Mondal S, Seo H, Dae Lee K, Oh J (2018a) Marine natural pigments as potential sources for therapeutic applications. Crit Rev Biotechnol 38:745–761PubMedCrossRefPubMedCentralGoogle Scholar
  52. Manivasagan P, Bharathiraja S, Santha Moorthy M, Mondal S, Nguyen TP, Kim H, Phan TTV, Lee KD, Oh J (2018b) Biocompatible chitosan oligosaccharide modified gold nanorods as highly effective photothermal agents for ablation of breast cancer cells. Polymers 10:232PubMedCentralCrossRefGoogle Scholar
  53. Mao S, Neu M, Germershaus O, Merkel O, Sitterberg J, Bakowsky U, Kissel T (2006) Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly (ethylene imine)-graft-poly (ethylene glycol) block copolymer/SiRNA polyplexes. Bioconjug Chem 17:1209–1218PubMedCrossRefPubMedCentralGoogle Scholar
  54. Mateo-Martí E, Briones C, Pradier C-M, Martin-Gago JA (2007) A DNA biosensor based on peptide nucleic acids on gold surfaces. Biosens Bioelectron 22:1926–1932PubMedCrossRefPubMedCentralGoogle Scholar
  55. Mondal S, Mahata S, Kundu S, Mondal B (2010) Processing of natural resourced hydroxyapatite ceramics from fish scale. Adv Appl Ceram 109:234–239CrossRefGoogle Scholar
  56. Mondal S, Bardhan R, Mondal B, Dey A, Mukhopadhyay SS, Roy S, Guha R, Roy K (2012) Synthesis, characterization and in vitro cytotoxicity assessment of hydroxyapatite from different bioresources for tissue engineering application. Bull Mater Sci 35:683–691CrossRefGoogle Scholar
  57. Mondal S, Mondal A, Mandal N, Mondal B, Mukhopadhyay S, Dey A, Singh S (2014) Physico-chemical characterization and biological response of Labeo rohita-derived hydroxyapatite scaffold. Bioprocess Biosyst Eng 37:1233–1240PubMedCrossRefPubMedCentralGoogle Scholar
  58. Mondal S, Pal U, Dey A (2016a) Natural origin hydroxyapatite scaffold as potential bone tissue engineering substitute. Ceram Int 42:18338–18346CrossRefGoogle Scholar
  59. Mondal S, Dey A, Pal U (2016b) Low temperature wet-chemical synthesis of spherical hydroxyapatite nanoparticles and their in situ cytotoxicity study. Adv Nano Res 4:295–307CrossRefGoogle Scholar
  60. Mondal S, Reyes MEDA, Pal U (2017a) Plasmon induced enhanced photocatalytic activity of gold loaded hydroxyapatite nanoparticles for methylene blue degradation under visible light. RSC Adv 7:8633–8645CrossRefGoogle Scholar
  61. Mondal S, Manivasagan P, Bharathiraja S, Santha Moorthy M, Nguyen VT, Kim HH, Nam SY, Lee KD, Oh J (2017b) Hydroxyapatite coated iron oxide nanoparticles: a promising nanomaterial for magnetic hyperthermia cancer treatment. Nano 7:426Google Scholar
  62. Mondal S, Dorozhkin SV, Pal U (2018a) Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10:e1504PubMedCrossRefGoogle Scholar
  63. Mondal S, Hoang G, Manivasagan P, Moorthy MS, Phan TTV, Kim HH, Nguyen TP, Oh J (2018b) Rapid microwave-assisted synthesis of gold loaded hydroxyapatite collagen nano-bio materials for drug delivery and tissue engineering application. Ceram IntGoogle Scholar
  64. Mondal S, Hoang G, Manivasagan P, Moorthy MS, Nguyen TP, Phan TTV, Kim HH, Kim MH, Nam SY, Oh J (2018c) Nano-hydroxyapatite bioactive glass composite scaffold with enhanced mechanical and biological performance for tissue engineering application. Ceram Int 44:15735CrossRefGoogle Scholar
  65. Moorthy MS, Subramanian B, Panchanathan M, Mondal S, Kim H, Lee KD, Oh J (2017) Fucoidan-coated core–shell magnetic mesoporous silica nanoparticles for chemotherapy and magnetic hyperthermia-based thermal therapy applications. New J Chem 41:15334–15346CrossRefGoogle Scholar
  66. Moorthy MS, Hoang G, Manivasagan P, Mondal S, Phan TTV, Kim H, Oh J (2018a) Chitosan oligosaccharide coated mesoporous silica nanoparticles for pH-stimuli responsive drug delivery applications. J Porous Mater:1–10Google Scholar
  67. Moorthy MS, Hoang G, Subramanian B, Bui NQ, Panchanathan M, Mondal S, Tuong VPT, Kim H, Oh J (2018b) Correction: Prussian blue decorated mesoporous silica hybrid nanocarriers for photoacoustic imaging-guided synergistic chemo-photothermal combination therapy. J Mater Chem B 6:5476–5477CrossRefGoogle Scholar
  68. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235PubMedPubMedCentralCrossRefGoogle Scholar
  69. Paavola A, Kilpeläinen I, Yliruusi J, Rosenberg P (2000) Controlled release injectable liposomal gel of ibuprofen for epidural analgesia. Int J Pharm 199:85–93PubMedCrossRefPubMedCentralGoogle Scholar
  70. Panchanathan M, Jun SW, Thanh PTN, Hoang G, Mondal S, Moorthy MS, Kim H, Tuong VPT, Doan VHM, Kim C-S (2018) Multifunctional near-infrared laser-triggered drug delivery system using folic acid conjugated chitosan oligosaccharide encapsulated gold nanorods for targeted chemo-photothermal therapy. J Mater Chem BGoogle Scholar
  71. Pandey R, Ahmad Z, Sharma S, Khuller G (2005) Nano-encapsulation of azole antifungals: potential applications to improve oral drug delivery. Int J Pharm 301:268–276PubMedCrossRefGoogle Scholar
  72. Phan TTV, Bui NQ, Cho S-W, Bharathiraja S, Manivasagan P, Moorthy MS, Mondal S, Kim C-S, Oh J (2018) Photoacoustic imaging-guided photothermal therapy with tumor-targeting HA-FeOOH@ PPy nanorods. Sci Rep 8:8809PubMedPubMedCentralCrossRefGoogle Scholar
  73. Phan TTV, Hoang G, Nguyen TP, Kim HH, Mondal S, Manivasagan P, Moorthy MS, Lee KD, Junghwan O (2019) Chitosan as a stabilizer and size-control agent for synthesis of porous flower-shaped palladium nanoparticles and their applications on photo-based therapies. Carbohydr Polym 205:340–352PubMedCrossRefGoogle Scholar
  74. Pillai G (2014) Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharm Pharm Sci 1(2):13Google Scholar
  75. Qiao R, Jia Q, Hüwel S, Xia R, Liu T, Gao F, Galla H-J, Gao M (2012) Receptor-mediated delivery of magnetic nanoparticles across the blood–brain barrier. ACS Nano 6:3304–3310PubMedCrossRefGoogle Scholar
  76. Riboh JC, Haes AJ, McFarland AD, Ranjit Yonzon C, Van Duyne RP (2003) A nanoscale optical biosensor: real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion. J Phys Chem B 107:1772–1780CrossRefGoogle Scholar
  77. Roszek B, De Jong W, Geertsma RE (2005) Nanotechnology in medical applications: state-of-the-art in materials and devicesGoogle Scholar
  78. Sahni G, Gopinath P, Jeevanandam P (2013) A novel thermal decomposition approach to synthesize hydroxyapatite–silver nanocomposites and their antibacterial action against GFP-expressing antibiotic resistant E. coli. Colloids Surf B: Biointerfaces 103:441–447PubMedCrossRefGoogle Scholar
  79. Sandin LC, Tötterman TH, Mangsbo SM (2014) Local immunotherapy based on agonistic CD40 antibodies effectively inhibits experimental bladder cancer. Oncoimmunology 3:e27400PubMedPubMedCentralCrossRefGoogle Scholar
  80. Sasikumar S, Vijayaraghavan R (2008) Effect of metal-ion-to-fuel ratio on the phase formation of bioceramic phosphates synthesized by self-propagating combustion. Sci Technol Adv Mater 9:035003PubMedPubMedCentralCrossRefGoogle Scholar
  81. Schmid G, Bäumle M, Geerkens M, Heim I, Osemann C, Sawitowski T (1999) Current and future applications of nanoclusters. Chem Soc Rev 28:179–185CrossRefGoogle Scholar
  82. Seymour LW, Ferry DR, Anderson D, Hesslewood S, Julyan PJ, Poyner R, Doran J, Young AM, Burtles S, Kerr DJ (2002) Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J Clin Oncol 20:1668–1676PubMedCrossRefGoogle Scholar
  83. Shi L, Fleming CJ, Riechers SL, Yin N-N, Luo J, Lam KS, Liu G-y (2011) High-resolution imaging of dendrimers used in drug delivery via scanning probe microscopy. J Drug DelivGoogle Scholar
  84. Silva C, Graça M, Valente M, Sombra A (2007) Crystallite size study of nanocrystalline hydroxyapatite and ceramic system with titanium oxide obtained by dry ball milling. J Mater Sci 42:3851–3855CrossRefGoogle Scholar
  85. Singh P, Kim Y-J, Zhang D, Yang D-C (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34:588–599PubMedCrossRefGoogle Scholar
  86. Song JM, Kasili PM, Griffin GD, Vo-Dinh T (2004) Detection of cytochrome C in a single cell using an optical nanobiosensor. Anal Chem 76:2591–2594PubMedCrossRefGoogle Scholar
  87. Sznitowska M, Gajewska M, Janicki S, Radwanska A, Lukowski G (2001) Bioavailability of diazepam from aqueous-organic solution, submicron emulsion and solid lipid nanoparticles after rectal administration in rabbits. Eur J Pharm Biopharm 52:159–163PubMedCrossRefGoogle Scholar
  88. Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–461PubMedPubMedCentralCrossRefGoogle Scholar
  89. Tripathi A, Wang J, Luck LA, Suni II (2007) Nanobiosensor design utilizing a periplasmic E. coli receptor protein immobilized within Au/polycarbonate nanopores. Anal Chem 79:1266–1270PubMedCrossRefGoogle Scholar
  90. Tripisciano C, Costa S, Kalenczuk R, Borowiak-Palen E (2010) Cisplatin filled multiwalled carbon nanotubes–a novel molecular hybrid of anticancer drug container. Eur Phys J B 75:141–146CrossRefGoogle Scholar
  91. Wagner V, Dullaart A, Bock A-K, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24:1211PubMedCrossRefGoogle Scholar
  92. Wang YM, Sato H, Adachi I, Horikoshi I (1996) Preparation and characterization of poly (lactic-co-glycolic acid) microspheres for targeted delivery of a novel anticancer agent, taxol. Chem Pharm Bull 44:1935–1940PubMedCrossRefGoogle Scholar
  93. Wang Y-XJ, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331PubMedCrossRefGoogle Scholar
  94. Wang J, Wang L, Liu X, Liang Z, Song S, Li W, Li G, Fan C (2007) A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv Mater 19:3943–3946CrossRefGoogle Scholar
  95. Wen S, Liu D-F, Liu Z, Harris S, Yao Y-Y, Ding Q, Nie F, Lu T, Chen H-J, An Y-L (2012) OxLDL-targeted iron oxide nanoparticles for in vivo MRI detection of perivascular carotid collar induced atherosclerotic lesions in ApoE-deficient mice. J Lipid Res:M018895Google Scholar
  96. Wilson B, Samanta MK, Santhi K, Kumar KS, Ramasamy M, Suresh B (2010) Chitosan nanoparticles as a new delivery system for the anti-Alzheimer drug tacrine. Nanomedicine 6:144–152PubMedCrossRefGoogle Scholar
  97. Xiong J, Wang Y, Xue Q, Wu X (2011) Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem 13:900–904CrossRefGoogle Scholar
  98. Yang J, Park S-B, Yoon H-G, Huh Y-M, Haam S (2006) Preparation of poly ɛ-caprolactone nanoparticles containing magnetite for magnetic drug carrier. Int J Pharm 324:185–190PubMedCrossRefGoogle Scholar
  99. Yang Q, Lu Z, Liu J, Lei X, Chang Z, Luo L, Sun X (2013) Metal oxide and hydroxide nanoarrays: hydrothermal synthesis and applications as supercapacitors and nanocatalysts. Progr Nat Sci Mat Int 23:351–366CrossRefGoogle Scholar
  100. Yang M, Fan Q, Zhang R, Cheng K, Yan J, Pan D, Ma X, Lu A, Cheng Z (2015) Dragon fruit-like biocage as an iron trapping nanoplatform for high efficiency targeted cancer multimodality imaging. Biomaterials 69:30–37PubMedPubMedCentralCrossRefGoogle Scholar
  101. Yano S, Hirohara S, Obata M, Hagiya Y, Ogura S-i, Ikeda A, Kataoka H, Tanaka M, Joh T (2011) Current states and future views in photodynamic therapy. J Photochem Photobiol C: Photochem Rev 12:46–67CrossRefGoogle Scholar
  102. Yoo HS, Lee KH, Oh JE, Park TG (2000) In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin–PLGA conjugates. J Control Release 68:419–431PubMedCrossRefGoogle Scholar
  103. Yu H, Nie Y, Dohmen C, Li Y, Wagner E (2011) Epidermal growth factor–PEG functionalized PAMAM-pentaethylenehexamine dendron for targeted gene delivery produced by click chemistry. Biomacromolecules 12:2039–2047PubMedCrossRefGoogle Scholar
  104. Yukihara M, Ito K, Tanoue O, Goto K, Matsushita T, Matsumoto Y, Masuda M, Kimura S, Ueoka R (2011) Effective drug delivery system for duchenne muscular dystrophy using hybrid liposomes including gentamicin along with reduced toxicity. Biol Pharm Bull 34:712–716PubMedCrossRefGoogle Scholar
  105. Zeng H, Du XW, Singh SC, Kulinich SA, Yang S, He J, Cai W (2012) Nanomaterials via laser ablation/irradiation in liquid: a review. Adv Funct Mater 22:1333–1353CrossRefGoogle Scholar
  106. Zhu G, Zhang F, Ni Q, Niu G, Chen X (2017) Efficient nanovaccine delivery in cancer immunotherapy. ACS Nano 11:2387–2392PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Marine-Integrated Bionics Research CenterPukyong National UniversityBusanRepublic of Korea

Personalised recommendations