Introduction to Ideal Characteristics and Advanced Biomedical Applications of Biomaterials

  • Govinda Kapusetti
  • Namdev More
  • Mounika Choppadandi


Biomaterial intervention in healthcare is inevitable, rather required for a better life. They are well practiced from ancient times, and the successive evolution made them more potent, versatile, and easy for clinical practice. However, the mimicking of the materials is not at all absolute, and in some cases it is very minimal as compared to the native tissues. The course of development of a biomaterial needs a strong understanding of the basic characteristics of the material behavior in bioenvironmental. The chapter discusses the various types of biomaterials starting from polymers to composites, and it presents the detailed information about the required ideal characteristics of a biomaterial like biocompatibility, bio-inertness, bioactivity, bioabsorbable pattern, bio-adaptability, sterilization, etc. In contemporary medical technology, biomaterials play a major role to answer many complications with high accuracy. The chapter primarily focuses on the latest advancements in biomaterials for major areas like orthopedics, cardiovascular, ophthalmology, neuronal, etc. Further, the chapter gives special emphasis on tissue engineering aspect of biomaterials to the regeneration of tissues and therapy.


  1. Agrawal CM (1998) Reconstructing the human body using biomaterials. JOM 50:31–35CrossRefGoogle Scholar
  2. Aguzzi C, Sandri G, Bonferoni C, Cerezo P, Rossi S, Ferrari F, Caramella C, Viseras C (2014) Solid state characterisation of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposite for wound healing. Colloids Surf B: Biointerfaces 113:152–157CrossRefGoogle Scholar
  3. Ahmad M, Manzoor K, Ikram S (2019) Chitosan nanocomposites for bone and cartilage regeneration. In: Applications of nanocomposite materials in dentistry. ElsevierGoogle Scholar
  4. Akturk O, Kismet K, Yasti AC, Kuru S, Duymus ME, Kaya F, Caydere M, Hucumenoglu S, Keskin D (2016) Collagen/gold nanoparticle nanocomposites: a potential skin wound healing biomaterial. J Biomater Appl 31:283–301CrossRefGoogle Scholar
  5. Alvarez-Lorenzo C, Anguiano-Igea S, Varela-García A, Vivero-Lopez M, Concheiro A (2018) Bioinspired hydrogels for drug-eluting contact lenses. Acta BiomaterGoogle Scholar
  6. Archana D, Singh BK, Dutta J, Dutta P (2013) In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohydr Polym 95:530–539CrossRefGoogle Scholar
  7. Arora M, Chan EK, Gupta S, Diwan AD (2013) Polymethylmethacrylate bone cements and additives: a review of the literature. World J Orthop 4:67CrossRefPubMedPubMedCentralGoogle Scholar
  8. Arumugam R, Srinadhu ES, Subramanian B, Nallani S (2019) β-PVDF based electrospun nanofibers–a promising material for developing cardiac patches. Med Hypotheses 122:31–34CrossRefGoogle Scholar
  9. Augustine R, Dominic EA, Reju I, Kaimal B, Kalarikkal N, Thomas S (2014) Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing. RSC Adv 4:24777–24785CrossRefGoogle Scholar
  10. Baino F, Perero S, Ferraris S, Miola M, Balagna C, Verné E, Vitale-Brovarone C, Coggiola A, Dolcino D, Ferraris M (2014) Biomaterials for orbital implants and ocular prostheses: overview and future prospects. Acta Biomater 10:1064–1087CrossRefGoogle Scholar
  11. Bandyopadhyay A, Bose S (2013) Characterization of biomaterials. NewnesGoogle Scholar
  12. Bejleri D, Streeter BW, Nachlas AL, Brown ME, Gaetani R, Christman KL, Davis ME (2018) A bioprinted cardiac patch composed of cardiac-specific extracellular matrix and progenitor cells for heart repair. Adv Healthc Mater 7:1800672CrossRefGoogle Scholar
  13. Bhong SY, More N, Choppadandi M, Kapusetti G (2019) Review on carbon nanomaterials as typical candidates for orthopaedic coatings. SN Appl Sci 1:76CrossRefGoogle Scholar
  14. Bilezikian JP, Raisz LG, Martin TJ (2008) Principles of bone biology. Academic PressGoogle Scholar
  15. Bissen-Miyajima H (2008) Ophthalmic viscosurgical devices. Curr Opin Ophthalmol 19:50–54CrossRefGoogle Scholar
  16. Bohner M (2008) Bioresorbable ceramics. Elsevier, Degradation rate of bioresorbable materialsCrossRefGoogle Scholar
  17. Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30:546–554CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bradl H (2005) Sources and origins of heavy metals. Elsevier, Interface Science and TechnologyGoogle Scholar
  19. Bukka M, Rednam PJ, Sinha M (2018) Drug-eluting balloon: design, technology and clinical aspects. Biomed Mater 13:032001CrossRefGoogle Scholar
  20. Burg KJ, Porter S, Kellam JF (2000) Biomaterial developments for bone tissue engineering. Biomaterials 21:2347–2359CrossRefPubMedPubMedCentralGoogle Scholar
  21. Burt HM, Hunter WL (2006) Drug-eluting stents: a multidisciplinary success story. Adv Drug Deliv Rev 58:350–357CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cancedda R, Dozin B, Giannoni P, Quarto R (2003) Tissue engineering and cell therapy of cartilage and bone. Matrix Biol 22:81–91CrossRefPubMedPubMedCentralGoogle Scholar
  23. Centeno RF (2009) Surgisis acellular collagen matrix in aesthetic and reconstructive plastic surgery soft tissue applications. Clin Plast Surg 36:229–240CrossRefPubMedPubMedCentralGoogle Scholar
  24. Chaudhuri R, Ramachandran M, Moharil P, Harumalani M, Jaiswal AK (2017) Biomaterials and cells for cardiac tissue engineering: current choices. Mater Sci Eng C 79:950–957CrossRefGoogle Scholar
  25. Chen MS, John JM, Chew DP, Lee DS, Ellis SG, Bhatt DL (2006) Bare metal stent restenosis is not a benign clinical entity. Am Heart J 151:1260–1264CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cheng M (2003) Medical device regulations: global overview and guiding principles. World Health OrganizationGoogle Scholar
  27. Chi N-H, Yang M-C, Chung T-W, Chou N-K, Wang S-S (2013) Cardiac repair using chitosan-hyaluronan/silk fibroin patches in a rat heart model with myocardial infarction. Carbohydr Polym 92:591–597CrossRefPubMedPubMedCentralGoogle Scholar
  28. Choi JH, Kim DK, Song JE, Oliveira JM, Reis RL, Khang G (2018) Silk fibroin-based scaffold for bone tissue engineering. Springer, Novel Biomaterials for Regenerative MedicineCrossRefGoogle Scholar
  29. Chong E, Phan T, Lim I, Zhang Y, Bay B, Ramakrishna S, Lim C (2007) Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater 3:321–330CrossRefPubMedPubMedCentralGoogle Scholar
  30. Claiborne TE, Slepian MJ, Hossainy S, Bluestein D (2012) Polymeric trileaflet prosthetic heart valves: evolution and path to clinical reality. Expert Rev Med Devices 9:577–594CrossRefPubMedPubMedCentralGoogle Scholar
  31. Cui Z, Yang B, Li R-K (2016) Application of biomaterials in cardiac repair and regeneration. Engineering 2:141–148CrossRefGoogle Scholar
  32. D’Amore A, Yoshizumi T, Luketich SK, Wolf MT, Gu X, Cammarata M, Hoff R, Badylak SF, Wagner WR (2016) Bi-layered polyurethane–extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. Biomaterials 107:1–14CrossRefGoogle Scholar
  33. Dai T, Tanaka M, Huang Y-Y, Hamblin MR (2011) Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti-Infect Ther 9:857–879CrossRefPubMedPubMedCentralGoogle Scholar
  34. Dainiak MB, Allan IU, Savina IN, Cornelio L, James ES, James SL, Mikhalovsky SV, Jungvid H, Galaev IY (2010) Gelatin–fibrinogen cryogel dermal matrices for wound repair: preparation, optimisation and in vitro study. Biomaterials 31:67–76CrossRefGoogle Scholar
  35. Díez-Pascual AM, Díez-Vicente AL (2015) Wound healing bionanocomposites based on castor oil polymeric films reinforced with chitosan-modified ZnO nanoparticles. Biomacromolecules 16:2631–2644CrossRefGoogle Scholar
  36. Dodla MC, Bellamkonda RV (2008) Differences between the effect of anisotropic and isotropic laminin and nerve growth factor presenting scaffolds on nerve regeneration across long peripheral nerve gaps. Biomaterials 29:33–46CrossRefGoogle Scholar
  37. DOS Santos V, Brandalise RN, Savaris M (2017) Biomaterials: characteristics and properties. Springer, Engineering of BiomaterialsGoogle Scholar
  38. Dvir T, Timko BP, Brigham MD, Naik SR, Karajanagi SS, Levy O, Jin H, Parker KK, Langer R, Kohane DS (2011) Nanowired three-dimensional cardiac patches. Nat Nanotechnol 6:720CrossRefPubMedPubMedCentralGoogle Scholar
  39. Fagien S (2010) Variable reconstitution of injectable hyaluronic acid with local anesthetic for expanded applications in facial aesthetic enhancement. Dermatol Surg 36:815–821CrossRefGoogle Scholar
  40. Fan Z, Liu B, Wang J, Zhang S, Lin Q, Gong P, Ma L, Yang S (2014) A novel wound dressing based on ag/graphene polymer hydrogel: effectively kill bacteria and accelerate wound healing. Adv Funct Mater 24:3933–3943CrossRefGoogle Scholar
  41. Ferreira AM, Gentile P, Chiono V, Ciardelli G (2012) Collagen for bone tissue regeneration. Acta Biomater 8:3191–3200CrossRefGoogle Scholar
  42. Galante R, Oliveira AS, Topete A, Ghisleni D, Braga M, Pinto TJ, Colaço R, Serro AP (2018) Drug-eluting silicone hydrogel for therapeutic contact lenses: impact of sterilization methods on the system performance. Colloids Surf B: Biointerfaces 161:537–546CrossRefGoogle Scholar
  43. Ghanavati S, Shishesaz MR, Farzam M, Danaee I (2016) Effects of surface treatment on corrosion resistance of 304L and 316L stainless steel implants in Hank’s solution. Iran J Oil Gas Sci Technol 5:65–72Google Scholar
  44. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Baharvand H, Kiani S, Al-Deyab SS, Ramakrishna S (2011) Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med 5:e17–e35CrossRefGoogle Scholar
  45. Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y (2015) Nanomaterials and bone regeneration. Bone Res 3:15029CrossRefPubMedPubMedCentralGoogle Scholar
  46. Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014) Poly (vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng C 34:54–61CrossRefGoogle Scholar
  47. Gopal A, Kant V, Gopalakrishnan A, Tandan SK, Kumar D (2014) Chitosan-based copper nanocomposite accelerates healing in excision wound model in rats. Eur J Pharmacol 731:8–19CrossRefGoogle Scholar
  48. Grill A (2003) Diamond-like carbon coatings as biocompatible materials—an overview. Diam Relat Mater 12:166–170CrossRefGoogle Scholar
  49. Grosfeld E-C, Hoekstra JWM, Herber R-P, Ulrich DJ, Jansen JA, VAN DEN Beucken JJ (2016) Long-term biological performance of injectable and degradable calcium phosphate cement. Biomed Mater 12:015009CrossRefGoogle Scholar
  50. Guo H-F, Li Z-S, Dong S-W, Chen W-J, Deng L, Wang Y-F, Ying D-J (2012) Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications. Colloids Surf B: Biointerfaces 96:29–36CrossRefGoogle Scholar
  51. Hadlock T, Sundback C, Hunter D, Cheney M, Vacanti JP (2000) A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration. Tissue Eng 6:119–127CrossRefGoogle Scholar
  52. Hajiali F, Tajbakhsh S, Shojaei A (2018) Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review. Polym Rev 58:164–207CrossRefGoogle Scholar
  53. Hara H, Nakamura M, Palmaz JC, Schwartz RS (2006) Role of stent design and coatings on restenosis and thrombosis. Adv Drug Deliv Rev 58:377–386CrossRefGoogle Scholar
  54. Hayashi K, Hayashi H, Nakao F, Hayashi F (1997) Reduction in the area of the anterior capsule opening after polymethylmethacrylate, silicone, and soft acrylic intraocular lens implantation. Am J Ophthalmol 123:441–447CrossRefGoogle Scholar
  55. Hench LL (2006) The story of bioglass®. J Mater Sci Mater Med 17:967–978CrossRefPubMedPubMedCentralGoogle Scholar
  56. Hendrick AM, Kahook MY (2008) Ex-PRESS™ mini glaucoma shunt: surgical technique and review of clinical experience. Expert Rev Med Devices 5:673–677CrossRefGoogle Scholar
  57. Hermawan H, Ramdan D, Djuansjah JR (2011) Metals for biomedical applications. Biomedical engineering-from theory to applications. InTechGoogle Scholar
  58. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518CrossRefGoogle Scholar
  59. Hosseinzadeh HRS, Emami M, Lahiji F, Shahi AS, Masoudi A, Emami S (2013) The acrylic bone cement in arthroplasty. Arthroplasty-Update, InTechCrossRefGoogle Scholar
  60. Hubbell JA (1995) Biomaterials in tissue engineering. Biotechnology 13:565Google Scholar
  61. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. The Biomaterials: Silver Jubilee Compendium. ElsevierGoogle Scholar
  62. Ide C, Tohyama K, Yokota R, Nitatori T, Onodera S (1983) Schwann cell basal lamina and nerve regeneration. Brain Res 288:61–75CrossRefGoogle Scholar
  63. Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, Kates SL, Awad HA (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034CrossRefPubMedPubMedCentralGoogle Scholar
  64. Iqbal J, Gunn J, Serruys PW (2013) Coronary stents: historical development, current status and future directions. Br Med Bull 106:193–211CrossRefGoogle Scholar
  65. Izadifar M, Chapman D, Babyn P, Chen X, Kelly ME (2018) UV-assisted 3D bioprinting of nanoreinforced hybrid cardiac patch for myocardial tissue engineering. Tissue Eng Part C Methods 24:74–88CrossRefGoogle Scholar
  66. Jacob J, More N, Kalia K, Kapusetti G (2018) Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflammation and Regeneration 38:2CrossRefPubMedPubMedCentralGoogle Scholar
  67. Johnson EO, Zoubos AB, Soucacos PN (2005) Regeneration and repair of peripheral nerves. Injury 36:S24–S29CrossRefGoogle Scholar
  68. Kapnisi M, Mansfield C, Marijon C, Guex AG, Perbellini F, Bardi I, Humphrey EJ, Puetzer JL, Mawad D, Koutsogeorgis DC (2018) Auxetic cardiac patches with tunable mechanical and conductive properties toward treating myocardial infarction. Adv Funct Mater 28:1800618CrossRefPubMedPubMedCentralGoogle Scholar
  69. Kim K-H, Jeong L, Park H-N, Shin S-Y, Park W-H, Lee S-C, Kim T-I, Park Y-J, Seol Y-J, Lee Y-M (2005) Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotechnol 120:327–339CrossRefGoogle Scholar
  70. Kohane DS, Langer R (2010) Biocompatibility and drug delivery systems. Chem Sci 1:441–446CrossRefGoogle Scholar
  71. Kokabi M, Sirousazar M, Hassan ZM (2007) PVA–clay nanocomposite hydrogels for wound dressing. Eur Polym J 43:773–781CrossRefGoogle Scholar
  72. Kokubo T (1991) Bioactive glass ceramics: properties and applications. Biomaterials 12:155–163CrossRefGoogle Scholar
  73. Kulinets I (2015) Biomaterials and their applications in medicine. Regulatory affairs for biomaterials and medical devices. ElsevierGoogle Scholar
  74. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces 75:1–18CrossRefGoogle Scholar
  75. Langer R, Peppas NA (2003) Advances in biomaterials, drug delivery, and bionanotechnology. AICHE J 49:2990–3006CrossRefGoogle Scholar
  76. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487CrossRefGoogle Scholar
  77. Lee K, Silva EA, Mooney DJ (2010) Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 8:153–170CrossRefPubMedPubMedCentralGoogle Scholar
  78. Leppik L, Zhihua H, Mobini S, Parameswaran VT, Eischen-Loges M, Slavici A, Helbing J, Pindur L, Oliveira KM, Bhavsar MB (2018) Combining electrical stimulation and tissue engineering to treat large bone defects in a rat model. Sci Rep 8:6307CrossRefPubMedPubMedCentralGoogle Scholar
  79. Li J, Zhai D, Lv F, Yu Q, Ma H, Yin J, Yi Z, Liu M, Chang J, Wu C (2016) Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta Biomater 36:254–266CrossRefGoogle Scholar
  80. Liang S, Zhang Y, Wang H, Xu Z, Chen J, Bao R, Tan B, Cui Y, Fan G, Wang W (2018) Paintable and rapidly bondable conductive hydrogels as therapeutic cardiac patches. Adv Mater 30:1704235CrossRefGoogle Scholar
  81. Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32:477–486CrossRefGoogle Scholar
  82. Liu S-J, Kau Y-C, Chou C-Y, Chen J-K, Wu R-C, Yeh W-L (2010) Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing. J Membr Sci 355:53–59CrossRefGoogle Scholar
  83. Liu M, Duan X-P, Li Y-M, Yang D-P, Long Y-Z (2017) Electrospun nanofibers for wound healing. Mater Sci Eng C 76:1413–1423CrossRefGoogle Scholar
  84. Lloyd AW, Faragher RG, Denyer SP (2001) Ocular biomaterials and implants. Biomaterials 22:769–785CrossRefGoogle Scholar
  85. Lu J, Descamps M, Dejou J, Koubi G, Hardouin P, Lemaitre J, Proust JP (2002) The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res 63:408–412CrossRefGoogle Scholar
  86. Lu Z, Gao J, He Q, Wu J, Liang D, Yang H, Chen R (2017) Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydr Polym 156:460–469CrossRefGoogle Scholar
  87. Lutolf M, Hubbell J (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47Google Scholar
  88. Malki M, Fleischer S, Shapira A, Dvir T (2018) Gold Nanorod-based engineered cardiac patch for suture-free engraftment by near IR. Nano Lett 18:4069CrossRefPubMedPubMedCentralGoogle Scholar
  89. Mansour HM, Sohn M, Al-Ghananeem A, Deluca PP (2010) Materials for pharmaceutical dosage forms: molecular pharmaceutics and controlled release drug delivery aspects. Int J Mol Sci 11:3298–3322CrossRefPubMedPubMedCentralGoogle Scholar
  90. Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238CrossRefGoogle Scholar
  91. Mehrabani D, Mehrabani G, Zare S, Manafi A (2013) Adipose-derived stem cells (ADSC) and aesthetic surgery: a mini review. World J Plast Surg 2:65PubMedPubMedCentralGoogle Scholar
  92. Meijer GJ, DE Bruijn JD, Koole R, VAN Blitterswijk CA (2007) Cell-based bone tissue engineering. PLoS Med 4:e9CrossRefPubMedPubMedCentralGoogle Scholar
  93. Meroni D, Ardizzone S (2018) Preparation and application of hybrid nanomaterials. Multidisciplinary Digital Publishing InstituteGoogle Scholar
  94. Mieszawska AJ, Fourligas N, Georgakoudi I, Ouhib NM, Belton DJ, Perry CC, Kaplan DL (2010) Osteoinductive silk–silica composite biomaterials for bone regeneration. Biomaterials 31:8902–8910CrossRefPubMedPubMedCentralGoogle Scholar
  95. Mittal S, Miranda O (2018) Recent advancements in biodegradable ocular implants. Curr Drug Deliv 15:144–154CrossRefPubMedPubMedCentralGoogle Scholar
  96. Mohan H (2005) Textbook of pathology. Jaypee Brothers Medical Publishers, New DelhiCrossRefGoogle Scholar
  97. More N, Kapusetti G (2017) Piezoelectric material–a promising approach for bone and cartilage regeneration. Med Hypotheses 108:10–16CrossRefGoogle Scholar
  98. Myung D, Duhamel PE, Cochran JR, Noolandi J, Ta CN, Frank CW (2008) Development of hydrogel-based keratoprostheses: A materials perspective. Biotechnol Prog 24:735–741CrossRefPubMedPubMedCentralGoogle Scholar
  99. Naahidi S, Jafari M, Logan M, Wang Y, Yuan Y, Bae H, Dixon B, Chen P (2017) Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 35:530–544CrossRefGoogle Scholar
  100. Niamtu J (2006) Advanta ePTFE facial implants in cosmetic facial surgery. J Oral Maxillofac Surg 64:543–549CrossRefPubMedPubMedCentralGoogle Scholar
  101. Niinomi M (2002) Recent metallic materials for biomedical applications. Metall Mater Trans A 33:477CrossRefGoogle Scholar
  102. Numata K, Kaplan D (2011) Biologically derived scaffolds. Advanced wound repair therapies. ElsevierGoogle Scholar
  103. Oberhoff M, Herdeg C, Baumbach A, Karsch KR (2002) Stent-based antirestenotic coatings (sirolimus/paclitaxel). Catheter Cardiovasc Interv 55:404–408CrossRefPubMedPubMedCentralGoogle Scholar
  104. O’brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14:88–95Google Scholar
  105. Ogueri KS, Jafari T, Ivirico JLE, Laurencin CT (2018) Polymeric biomaterials for scaffold-based bone regenerative engineering. In: Regenerative engineering and translational medicine. Springer, New York, pp 1–27Google Scholar
  106. Ong S-Y, Wu J, Moochhala SM, Tan M-H, Lu J (2008) Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29:4323–4332CrossRefPubMedPubMedCentralGoogle Scholar
  107. Park J, Kim J, Kim S-Y, Cheong WH, Jang J, Park Y-G, Na K, Kim Y-T, Heo JH, Lee CY (2018) Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Science Adv 4:eaap9841CrossRefGoogle Scholar
  108. Pattanashetti NA, Heggannavar GB, Kariduraganavar MY (2017) Smart biopolymers and their biomedical applications. Procedia Manufacturing 12:263–279CrossRefGoogle Scholar
  109. Peppas NA, Huang Y (2002) Polymers and gels as molecular recognition agents. Pharm Res 19:578–587CrossRefPubMedPubMedCentralGoogle Scholar
  110. Pérez JAC, Sosa-Hernández JE, Hussain SM, Bilal M, Parra-Saldivar R, Iqbal HM (2018) Bioinspired biomaterials and enzyme-based biosensors for point-of-care applications with reference to cancer and bio-imaging. Biocatal Agric Biotechnol 17:168–176CrossRefGoogle Scholar
  111. Petite H, Viateau V, Bensaid W, Meunier A, DE Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18:959CrossRefPubMedPubMedCentralGoogle Scholar
  112. Pino M, Stingelin N, Tanner K (2008) Nucleation and growth of apatite on NaOH-treated PEEK, HDPE and UHMWPE for artificial cornea materials. Acta Biomater 4:1827–1836CrossRefPubMedPubMedCentralGoogle Scholar
  113. Quarles LD (2008) Endocrine functions of bone in mineral metabolism regulation. J Clin Invest 118:3820–3828CrossRefPubMedPubMedCentralGoogle Scholar
  114. Rajabi AH, Jaffe M, Arinzeh TL (2015) Piezoelectric materials for tissue regeneration: a review. Acta Biomater 24:12–23CrossRefGoogle Scholar
  115. Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61:1189–1224CrossRefGoogle Scholar
  116. Ramalingam M, Kumar TS, Ramakrishna S, Soboyejo WO (2016) Biomaterials: a nano approach. CRC PressGoogle Scholar
  117. Rezwan K, Chen Q, Blaker J, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431CrossRefGoogle Scholar
  118. Riehle N, Thude S, Götz T, Kandelbauer A, Thanos S, Tovar GE, Lorenz G (2018) Influence of PDMS molecular weight on transparency and mechanical properties of soft polysiloxane-urea-elastomers for intraocular lens application. Eur Polym J 101:190–201CrossRefGoogle Scholar
  119. Robling AG, Castillo AB, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 8:455–498CrossRefGoogle Scholar
  120. Roeder RK (2013) Mechanical characterization of biomaterials. In: Characterization of biomaterials. Elsevier, AmsterdamCrossRefGoogle Scholar
  121. Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B (2017) Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C 78:1246–1262CrossRefGoogle Scholar
  122. Sabate M, Cequier A, Iñiguez A, Serra A, Hernandez-Antolin R, Mainar V, Valgimigli M, Tespili M, Den Heijer P, Bethencourt A (2012) Everolimus-eluting stent versus bare-metal stent in ST-segment elevation myocardial infarction (EXAMINATION): 1 year results of a randomised controlled trial. Lancet 380:1482–1490CrossRefGoogle Scholar
  123. Sadiasa A, Sarkar SK, Franco RA, Min YK, Lee BT (2014) Bioactive glass incorporation in calcium phosphate cement-based injectable bone substitute for improved in vitro biocompatibility and in vivo bone regeneration. J Biomater Appl 28:739–756CrossRefGoogle Scholar
  124. Samavedi S, Poindexter LK, van Dyke M, Goldstein AS (2014) Synthetic biomaterials for regenerative medicine applications. In: Regenerative medicine applications in organ transplantation. Elsevier, LondonGoogle Scholar
  125. Sandri G, Aguzzi C, Rossi S, Bonferoni MC, Bruni G, Boselli C, Cornaglia AI, Riva F, Viseras C, Caramella C (2017) Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomater 57:216–224CrossRefGoogle Scholar
  126. Santos JCC, Mansur AA, Ciminelli VS, Mansur HS (2014) Nanocomposites of poly (vinyl alcohol)/functionalized-multiwall carbon nanotubes conjugated with glucose oxidase for potential application as scaffolds in skin wound healing. Int J Polym Mater Polym Biomater 63:185–196CrossRefGoogle Scholar
  127. Schneider A, Wang X, Kaplan D, Garlick J, Egles C (2009) Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomater 5:2570–2578CrossRefGoogle Scholar
  128. Schoen FJ (2013) Introduction: “biological responses to biomaterials”. Biomaterials Science, 3rd edn. ElsevierGoogle Scholar
  129. Sharma R, Kapusetti G, Bhong SY, Roy P, Singh SK, Singh S, Balavigneswaran CK, Mahato KK, Ray B, Maiti P (2017) Osteoconductive amine-functionalized graphene–poly (methyl methacrylate) bone cement composite with controlled exothermic polymerization. Bioconjug Chem 28:2254–2265CrossRefGoogle Scholar
  130. Shevach M, Maoz BM, Feiner R, Shapira A, Dvir T (2013) Nanoengineering gold particle composite fibers for cardiac tissue engineering. J Mater Chem B 1:5210–5217CrossRefGoogle Scholar
  131. Siggelkow W, Faridi A, Spiritus K, Klinge U, Rath W, Klosterhalfen B (2003) Histological analysis of silicone breast implant capsules and correlation with capsular contracture. Biomaterials 24:1101–1109CrossRefGoogle Scholar
  132. Singh J, Agrawal K (1992) Polymeric materials for contact lenses. J Macromol Sci Polym Rev 32:521–534CrossRefGoogle Scholar
  133. Society, T. A. C. 2018. The American Ceramic Society [online]. Available:
  134. Souza MT, Tansaz S, Zanotto ED, Boccaccini AR (2017) Bioactive glass Fiber-reinforced PGS matrix composites for cartilage regeneration. Materials (Basel, Switzerland) 10:83CrossRefGoogle Scholar
  135. Stapleton F, Stretton S, Papas E, Skotnitsky C, Sweeney DF (2006) Silicone hydrogel contact lenses and the ocular surface. Ocul Surf 4:24–43CrossRefGoogle Scholar
  136. Stout DA, Basu B, Webster TJ (2011) Poly (lactic–co-glycolic acid): carbon nanofiber composites for myocardial tissue engineering applications. Acta Biomater 7:3101–3112CrossRefGoogle Scholar
  137. Sun Q, Qian B, Uto K, Chen J, Liu X, Minari T (2018) Functional biomaterials towards flexible electronics and sensors. Biosens Bioelectron 119:237CrossRefGoogle Scholar
  138. Sung JH, Hwang M-R, Kim JO, Lee JH, Kim YI, Kim JH, Chang SW, Jin SG, Kim JA, Lyoo WS (2010) Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan. Int J Pharm 392:232–240CrossRefGoogle Scholar
  139. Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 47:1–4CrossRefGoogle Scholar
  140. Tandon B, Blaker JJ, Cartmell SH (2018) Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomater 73:1CrossRefGoogle Scholar
  141. Tarun K, Gobi N (2012) Calcium alginate/PVA blended nano fibre matrix for wound dressing. Indian J Fibre Text Res 37:127–132Google Scholar
  142. Teo AJ, Mishra A, Park I, Kim Y-J, Park W-T, Yoon Y-J (2016) Polymeric biomaterials for medical implants and devices. ACS Biomater Sci Eng 2:454–472CrossRefGoogle Scholar
  143. Teoh SH (2004) Introduction to biomaterials engineering and processing—an overview. In: Engineering materials for biomedical applications. World Scientific, SingaporeCrossRefGoogle Scholar
  144. Ubelaker, D. 1984. Human skeletal remains. Excavation, analysis, interpretation. Taraxacum. Federation Dentaire Internnationale (1982). Nouveau Système de Dèsignation des dents. Bulletin Et Memoires de la Sociedad d’Antropologie de Paris. Serie, 12, 83–85Google Scholar
  145. Vasquez-Sancho F, Abdollahi A, Damjanovic D, Catalan G (2018) Flexoelectricity in bones. Adv Mater 30:1705316CrossRefGoogle Scholar
  146. Vedakumari WS, Prabu P, Sastry TP (2015) Chitosan-fibrin nanocomposites as drug delivering and wound healing materials. J Biomed Nanotechnol 11:657–667CrossRefGoogle Scholar
  147. Vedakumari WS, Ayaz N, Karthick AS, Senthil R, Sastry TP (2017) Quercetin impregnated chitosan–fibrin composite scaffolds as potential wound dressing materials—fabrication, characterization and in vivo analysis. Eur J Pharm Sci 97:106–112CrossRefGoogle Scholar
  148. Velde B, Druc IC (2012) Archaeological ceramic materials: origin and utilization. Springer, LondonGoogle Scholar
  149. Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37:1528–1542CrossRefPubMedPubMedCentralGoogle Scholar
  150. Vimala K, Yallapu MM, Varaprasad K, Reddy NN, Ravindra S, Naidu NS, Raju KM (2011) Fabrication of curcumin encapsulated chitosan-PVA silver nanocomposite films for improved antimicrobial activity. J Biomater Nanobiotechnol 2:55CrossRefGoogle Scholar
  151. Wache H, Tartakowska D, Hentrich A, Wagner M (2003) Development of a polymer stent with shape memory effect as a drug delivery system. J Mater Sci Mater Med 14:109–112CrossRefGoogle Scholar
  152. Wang Y (2016) Bioadaptability: an innovative concept for biomaterials. J Mater Sci Technol 32:801–809CrossRefGoogle Scholar
  153. Wang CC, Su CH, Chen CC (2008) Water absorbing and antibacterial properties of N-isopropyl acrylamide grafted and collagen/chitosan immobilized polypropylene nonwoven fabric and its application on wound healing enhancement. J Biomed Mater Res Part A 84:1006–1017CrossRefGoogle Scholar
  154. Wang X, Wang L, Wu Q, Bao F, Yang H, Qiu X, Chang J (2018) Chitosan/calcium silicate cardiac patch stimulates Cardiomyocyte activity and myocardial performance after infarction by synergistic effect of bioactive ions and aligned nanostructure. ACS Appl Mater Interfaces 11:1449–1468CrossRefGoogle Scholar
  155. Wanna D, Alam C, Toivola DM, Alam P (2013) Bacterial cellulose–kaolin nanocomposites for application as biomedical wound healing materials. Adv Nat Sci Nanosci Nanotechnol 4:045002CrossRefGoogle Scholar
  156. Wei Y, Zhang X, Song Y, Han B, Hu X, Wang X, Lin Y, Deng X (2011) Magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes for bone regeneration. Biomed Mater 6:055008CrossRefGoogle Scholar
  157. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953CrossRefGoogle Scholar
  158. Williams DF (2009) On the nature of biomaterials. Biomaterials 30:5897–5909CrossRefGoogle Scholar
  159. Willoughby CE, Ponzin D, Ferrari S, Lobo A, Landau K, Omidi Y (2010) Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function–a review. Clin Exp Ophthalmol 38:2–11CrossRefGoogle Scholar
  160. Wood MD, Moore AM, Hunter DA, Tuffaha S, Borschel GH, Mackinnon SE, Sakiyama-Elbert SE (2009) Affinity-based release of glial-derived neurotrophic factor from fibrin matrices enhances sciatic nerve regeneration. Acta Biomater 5:959–968CrossRefGoogle Scholar
  161. Xie Z, Paras CB, Weng H, Punnakitikashem P, Su L-C, Vu K, Tang L, Yang J, Nguyen KT (2013) Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater 9:9351–9359CrossRefGoogle Scholar
  162. Xu HH, Wang P, Wang L, Bao C, Chen Q, Weir MD, Chow LC, Zhao L, Zhou X, Reynolds MA (2017) Calcium phosphate cements for bone engineering and their biological properties. Bone Res 5:17056CrossRefPubMedPubMedCentralGoogle Scholar
  163. Yang F, Murugan R, Wang S, Ramakrishna S (2005) Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610CrossRefGoogle Scholar
  164. Yang Y, Xia T, Chen F, Wei W, Liu C, He S, Li X (2011) Electrospun fibers with plasmid bFGF polyplex loadings promote skin wound healing in diabetic rats. Mol Pharm 9:48–58CrossRefGoogle Scholar
  165. Zhang D, Wu X, Chen J, Lin K (2018) The development of collagen based composite scaffolds for bone regeneration. Bioactive Mater 3:129–138CrossRefGoogle Scholar
  166. Zhong S, Zhang Y, Lim C (2010) Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:510–525CrossRefGoogle Scholar
  167. Ziats NP, Miller KM, Anderson JM (1988) In vitro and in vivo interactions of cells with biomaterials. Biomaterials 9:5–13CrossRefGoogle Scholar
  168. Zine R, Sinha M (2017) Nanofibrous poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/collagen/graphene oxide scaffolds for wound coverage. Mater Sci Eng C 80:129–134CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Govinda Kapusetti
    • 1
  • Namdev More
    • 1
  • Mounika Choppadandi
    • 1
  1. 1.Department of Medical DevicesNational Institute of Pharmaceutical Education and Research (NIPER)-AhmedabadGandhinagarIndia

Personalised recommendations