Advertisement

Biophotonics in Disease Diagnosis and Therapy

  • Shrutidhara Biswas
  • Vlad Bogdan Gavra
  • Anand Kant DasEmail author
  • Umakanta TripathyEmail author
Chapter

Abstract

Biophotonics is the multidisciplinary domain of science that uses light, in the visible and near-visible range, to study biological materials. Most biological tissues are sensitive to light, and these interactions can be harnessed for their imaging, detection, and manipulation. With the advent of advanced lasers, optics, spectroscopy, and microscopy tools, biophotonics find widespread application in biological and clinical research. Here, we provide an overview of how the field has expanded in the area of disease diagnosis and therapy with particular emphasis on label-free harmonic generation imaging microscopy, label-free multiphoton fluorescence imaging microscopy, spectroscopy, and tomography tools for clinical use. We have discussed, in brief, the fundamentals and principles behind each of the biophotonics method, the specific advantages and disadvantages of the tools, and the latest development in its use for improving diagnosis and therapy of various disease conditions. We intend to motivate the readers to draw inspiration for research, development, and translation of biophotonics to address the unmet clinical needs of humanity.

References

  1. Abhyankar, R., et al. Amyloid diagnostics: probing protein aggregation and conformation with ultrasensitive fluorescence detection. SPIE BiOS. 2012. SPIEGoogle Scholar
  2. Adler DG et al (2005) ASGE guideline: the role of ERCP in diseases of the biliary tract and the pancreas. Gastrointest Endosc 62(1):1–8CrossRefGoogle Scholar
  3. Adler DG et al (2006) The role of endoscopy in ampullary and duodenal adenomas. Gastrointest Endosc 64(6):849–854CrossRefGoogle Scholar
  4. Agarwal A et al (2007) Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys 102(6):064701CrossRefGoogle Scholar
  5. Bancelin S et al (2017) Probing microtubules polarity in mitotic spindles in situ using interferometric second harmonic generation microscopy. Sci Rep 7(1):6758–6758CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barad Y et al (1997) Nonlinear scanning laser microscopy by third harmonic generation. Appl Phys Lett 70(8):922–924CrossRefGoogle Scholar
  7. Baumal CR (1999) Clinical applications of optical coherence tomography. Curr Opin Ophthalmol 10(3):182–188CrossRefGoogle Scholar
  8. Bélisle JM et al (2008) Sensitive detection of malaria infection by third harmonic generation imaging. Biophys J 94(4):L26–L28CrossRefGoogle Scholar
  9. Brown EB et al (2001) In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 7(7):864–868CrossRefGoogle Scholar
  10. Brown E et al (2003) Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat Med 9(6):796–800CrossRefGoogle Scholar
  11. Bugarski M et al (2018) Multiphoton imaging reveals axial differences in metabolic autofluorescence signals along the kidney proximal tubule. Am J Physiol Ren Physiol 315(6):F1613–F1625CrossRefGoogle Scholar
  12. Campagnola P (2011) Second harmonic generation imaging microscopy: applications to diseases diagnostics. Anal Chem 83(9):3224–3231CrossRefPubMedPubMedCentralGoogle Scholar
  13. Canioni L et al (2001) Imaging of ca(2)+ intracellular dynamics with a third-harmonic generation microscope. Opt Lett 26(8):515–517CrossRefGoogle Scholar
  14. Chatterjee M et al (2017) Detection of contactin-2 in cerebrospinal fluid (CSF) of patients with Alzheimer's disease using fluorescence correlation spectroscopy (FCS). Clin Biochem 50(18):1061–1066CrossRefGoogle Scholar
  15. Chen C-K, Liu T-M (2012) Imaging morphodynamics of human blood cells in vivo with video-rate third harmonic generation microscopy. Biomed Opt Express 3(11):2860–2865CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chen S-Y, Hsu C-YS, Sun C-K (2008) Epi-third and second harmonic generation microscopic imaging of abnormal enamel. Opt Express 16(15):11670–11679PubMedGoogle Scholar
  17. Chen Y-C et al (2015) Third-harmonic generation microscopy reveals dental anatomy in ancient fossils. Opt Lett 40(7):1354–1357CrossRefGoogle Scholar
  18. Christie RH et al (2001) Growth arrest of individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton microscopy. J Neurosci 21(3):858–864CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cicchi R et al (2007) Multidimensional non-linear laser imaging of Basal Cell Carcinoma. Opt Express 15(16):10135–10148CrossRefGoogle Scholar
  20. Cicchi R et al (2008) Nonlinear laser imaging of skin lesions. J Biophotonics 1(1):62–73CrossRefGoogle Scholar
  21. Coda S et al (2015) Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer. Endos Int Open 3(5):E380–E392CrossRefGoogle Scholar
  22. Das AK, Pandit R, Maiti S (2015) Effect of amyloids on the vesicular machinery: implications for somatic neurotransmission. Philos Trans R Soc Lond Ser B Biol Sci 370(1672):20140187CrossRefGoogle Scholar
  23. Das AK et al (2017) Label-free Ratiometric imaging of serotonin in live cells. ACS Chem Neurosci 8(11):2369–2373CrossRefGoogle Scholar
  24. Davila RE et al (2005) ASGE guideline: the role of endoscopy in the patient with lower-GI bleeding. Gastrointest Endosc 62(5):656–660CrossRefGoogle Scholar
  25. de la Zerda A et al (2010) Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett 10(6):2168–2172CrossRefPubMedPubMedCentralGoogle Scholar
  26. Debarre D et al (2006) Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat Methods 3(1):47–53CrossRefGoogle Scholar
  27. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76CrossRefGoogle Scholar
  28. Diekmann S, Hoischen C (2014) Biomolecular dynamics and binding studies in the living cell. Phys Life Rev 11(1):1–30CrossRefGoogle Scholar
  29. Dombeck DA, Blanchard-Desce M, Webb WW (2004) Optical recording of action potentials with second-harmonic generation microscopy. J Neurosci 24(4):999–1003CrossRefPubMedPubMedCentralGoogle Scholar
  30. Dooley CP et al (1984) Double-contrast barium meal and upper gastrointestinal endoscopy: a comparative study. Ann Intern Med 101(4):538–545CrossRefGoogle Scholar
  31. Enderlein J et al (2004) Art and artefacts of fluorescence correlation spectroscopy. Curr Pharm Biotechnol 5(2):155–161CrossRefGoogle Scholar
  32. Farrar MJ et al (2011) In vivo imaging of myelin in the vertebrate central nervous system using third harmonic generation microscopy. Biophys J 100(5):1362–1371CrossRefPubMedPubMedCentralGoogle Scholar
  33. Fine S, Hansen WP (1971) Optical second harmonic generation in biological systems. Appl Opt 10(10):2350–2353CrossRefGoogle Scholar
  34. Fittinghoff DN et al (1998) Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperture objectives. Opt Lett 23(13):1046–1048CrossRefGoogle Scholar
  35. Freund I, Deutsch M (1986) Second-harmonic microscopy of biological tissue. Opt Lett 11(2):94CrossRefGoogle Scholar
  36. Fujii F et al (2007) Detection of prion protein immune complex for bovine spongiform encephalopathy diagnosis using fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy. Anal Biochem 370(2):131–141CrossRefGoogle Scholar
  37. Fujimoto JG et al (2000a) Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2(1–2):9–25CrossRefPubMedPubMedCentralGoogle Scholar
  38. Fujimoto JG et al (2000b) Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2(1):9–25CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gibson EA et al (2011) Multiphoton microscopy for ophthalmic imaging. J Ophthalmol 2011:11Google Scholar
  40. Hac AE et al (2005) Diffusion in two-component lipid membranes--a fluorescence correlation spectroscopy and Monte Carlo simulation study. Biophys J 88(1):317–333CrossRefGoogle Scholar
  41. Hirota WK et al (2006) ASGE guideline: the role of endoscopy in the surveillance of premalignant conditions of the upper GI tract. Gastrointest Endosc 63(4):570–580CrossRefGoogle Scholar
  42. Jacobson BC et al (2003) The role of endoscopy in the assessment and treatment of esophageal cancer. Gastrointest Endosc 57(7):817–822CrossRefGoogle Scholar
  43. Jaffe GJ, Caprioli J (2004) Optical coherence tomography to detect and manage retinal disease and glaucoma. Am J Ophthalmol 137(1):156–169CrossRefGoogle Scholar
  44. Jain M et al (2015) Multiphoton microscopy: a potential intraoperative tool for the detection of carcinoma in situ in human bladder. Arch Pathol Lab Med 139(6):796–804CrossRefGoogle Scholar
  45. Jiang J et al (2018) Analysis of the concentrations and size distributions of cell-free DNA in schizophrenia using fluorescence correlation spectroscopy. Transl Psychiatry 8(1):104CrossRefPubMedPubMedCentralGoogle Scholar
  46. Jo J et al (2017) A functional study of human inflammatory arthritis using photoacoustic imaging. Sci Rep 7(1):15026CrossRefPubMedPubMedCentralGoogle Scholar
  47. Jung Y, Zhi Z, Wang RK (2010) Three-dimensional optical imaging of microvascular networks within intact lymph node in vivo. J Biomed Opt 15(5):050501–050501CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kilpatrick LE, Hill SJ (2016) The use of fluorescence correlation spectroscopy to characterize the molecular mobility of fluorescently labelled G protein-coupled receptors. Biochem Soc Trans 44(2):624–629CrossRefPubMedPubMedCentralGoogle Scholar
  49. Krafft C (2016) Modern trends in biophotonics for clinical diagnosis and therapy to solve unmet clinical needs. J Biophotonics 9(11–12):1362–1375CrossRefGoogle Scholar
  50. Kumavor PD et al (2013) Co-registered pulse-echo/photoacoustic transvaginal probe for real time imaging of ovarian tissue. J Biophotonics 6(6–7):475–484CrossRefPubMedPubMedCentralGoogle Scholar
  51. Le TT et al (2007) Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy. J Biomed Opt 12(5):054007CrossRefPubMedPubMedCentralGoogle Scholar
  52. Leighton JA et al (2006) ASGE guideline: endoscopy in the diagnosis and treatment of inflammatory bowel disease. Gastrointest Endosc 63(4):558–565CrossRefGoogle Scholar
  53. Li P-C et al (2008) In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods. Opt Express 16(23):18605–18615CrossRefGoogle Scholar
  54. Li M-L et al (2009) In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature. SPIEGoogle Scholar
  55. Lim H et al (2014) Label-free imaging of Schwann cell myelination by third harmonic generation microscopy. Proc Natl Acad Sci 111(50):18025–18030CrossRefGoogle Scholar
  56. Lippitz M, van Dijk MA, Orrit M (2005) Third-harmonic generation from single gold nanoparticles. Nano Lett 5(4):799–802CrossRefGoogle Scholar
  57. Machan R, Wohland T (2014) Recent applications of fluorescence correlation spectroscopy in live systems. FEBS Lett 588(19):3571–3584CrossRefGoogle Scholar
  58. Magde D, Elson E, Webb WW (1972) Thermodynamic fluctuations in a reacting system---measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29(11):705–708CrossRefGoogle Scholar
  59. Maier C et al (2005) G-protein-coupled glucocorticoid receptors on the pituitary cell membrane. J Cell Sci 118(Pt 15):3353–3361CrossRefGoogle Scholar
  60. Maiti S et al (1997a) Measuring serotonin distribution in live cells with three-photon excitation. Science 275(5299):530–532CrossRefGoogle Scholar
  61. Maiti S, Haupts U, Webb WW (1997b) Fluorescence correlation spectroscopy: diagnostics for sparse molecules. Proc Natl Acad Sci U S A 94(22):11753–11757CrossRefPubMedPubMedCentralGoogle Scholar
  62. Marcu L et al (2017) Biophotonics: the big picture. SPIEGoogle Scholar
  63. Marrocco M (2004) Fluorescence correlation spectroscopy: incorporation of probe volume effects into the three-dimensional Gaussian approximation. Appl Opt 43(27):5251–5262CrossRefGoogle Scholar
  64. Martin T, Schwab K, Singh S (2014) Principles of gastrointestinal endoscopy. Surgery (Oxford) 32(3):139–144CrossRefGoogle Scholar
  65. Matsui T et al (2017) Non-labeling multiphoton excitation microscopy as a novel diagnostic tool for discriminating normal tissue and colorectal cancer lesions. Sci Rep 7(1):6959CrossRefPubMedPubMedCentralGoogle Scholar
  66. Matteini P et al (2009) Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging. Opt Express 17(6):4868–4878CrossRefGoogle Scholar
  67. Millard AC et al (1999) Third-harmonic generation microscopy by use of a compact, femtosecond fiber laser source. Appl Opt 38(36):7393–7397CrossRefGoogle Scholar
  68. Miri AK et al (2012) Nonlinear laser scanning microscopy of human vocal folds. Laryngoscope 122(2):356–363CrossRefPubMedPubMedCentralGoogle Scholar
  69. Miri AK et al (2013) Microstructural characterization of vocal folds toward a strain-energy model of collagen remodeling. Acta Biomater 9(8):7957–7967CrossRefPubMedPubMedCentralGoogle Scholar
  70. Moore LE (2003) The advantages and disadvantages of endoscopy. Clin Tech Small Anim Pract 18(4):250–253CrossRefGoogle Scholar
  71. Nadiarnykh O, Campagnola PJ (2009) Retention of polarization signatures in SHG microscopy of scattering tissues through optical clearing. Opt Express 17(7):5794–5806CrossRefPubMedPubMedCentralGoogle Scholar
  72. Nadiarnykh O et al (2007) Second harmonic generation imaging microscopy studies of osteogenesis imperfecta, vol 12. SPIE, p 051805Google Scholar
  73. Nadiarnykh O et al (2010) Alterations of the extracellular matrix in ovarian cancer studied by second harmonic generation imaging microscopy. BMC Cancer 10:94–94CrossRefPubMedPubMedCentralGoogle Scholar
  74. Negwer I et al (2018) Monitoring drug nanocarriers in human blood by near-infrared fluorescence correlation spectroscopy. Nat Commun 9(1):5306CrossRefPubMedPubMedCentralGoogle Scholar
  75. Nishimura G, Kinjo M (2004) Systematic error in fluorescence correlation measurements identified by a simple saturation model of fluorescence. Anal Chem 76(7):1963–1970CrossRefGoogle Scholar
  76. Nuriya M et al (2006) Imaging membrane potential in dendritic spines. Proc Natl Acad Sci U S A 103(3):786–790CrossRefPubMedPubMedCentralGoogle Scholar
  77. Oertel FC et al (2018) Optical coherence tomography in neuromyelitis optica spectrum disorders: potential advantages for individualized monitoring of progression and therapy. EPMA J 9(1):21–33CrossRefGoogle Scholar
  78. Oron D et al (2004) Depth-resolved structural imaging by third-harmonic generation microscopy. J Struct Biol 147(1):3–11CrossRefGoogle Scholar
  79. Paoli J et al (2008) Multiphoton laser scanning microscopy on non-melanoma skin cancer: morphologic features for future non-invasive diagnostics. J Investig Dermatol 128(5):1248–1255CrossRefGoogle Scholar
  80. Pitschke M et al (1998) Detection of single amyloid beta-protein aggregates in the cerebrospinal fluid of Alzheimer's patients by fluorescence correlation spectroscopy. Nat Med 4(7):832–834CrossRefGoogle Scholar
  81. Plotnikov S et al (2006) Optical clearing for improved contrast in second harmonic generation imaging of skeletal muscle. Biophys J 90(1):328–339CrossRefGoogle Scholar
  82. Provenzano PP et al (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4(1):38CrossRefPubMedPubMedCentralGoogle Scholar
  83. Provenzano PP et al (2008) Collagen density promotes mammary tumor initiation and progression. BMC Med 6:11CrossRefPubMedPubMedCentralGoogle Scholar
  84. Rehberg M et al (2011) Label-free 3D visualization of cellular and tissue structures in intact muscle with second and third harmonic generation microscopy. PLoS One 6(11):e28237CrossRefPubMedPubMedCentralGoogle Scholar
  85. Reiser KM et al (2007) Quantitative analysis of structural disorder in intervertebral disks using second harmonic generation imaging: comparison with morphometric analysis. SPIEGoogle Scholar
  86. Ricard-Blum S, Baffet G, Théret N (2018) Molecular and tissue alterations of collagens in fibrosis. Matrix Biol 68-69:122–149CrossRefGoogle Scholar
  87. Roy HK et al (2008) Spectral slope from the endoscopically-normal mucosa predicts concurrent colonic neoplasia: a pilot ex-vivo clinical study. Dis Colon Rectum 51(9):1381–1386CrossRefPubMedPubMedCentralGoogle Scholar
  88. Sacconi L, Dombeck DA, Webb WW (2006) Overcoming photodamage in second-harmonic generation microscopy: real-time optical recording of neuronal action potentials. Proc Natl Acad Sci U S A 103(9):3124–3129CrossRefPubMedPubMedCentralGoogle Scholar
  89. Sandoval RM, Molitoris BA (2017) Intravital multiphoton microscopy as a tool for studying renal physiology and pathophysiology. Methods (San Diego, Calif) 128:20–32CrossRefGoogle Scholar
  90. Sarkar B et al (2012) The dynamics of somatic exocytosis in monoaminergic neurons. Front Physiol 3:414CrossRefPubMedPubMedCentralGoogle Scholar
  91. Sarkar B et al (2014) Label-free dopamine imaging in live rat brain slices. ACS Chem Neurosci 5(5):329–334CrossRefPubMedPubMedCentralGoogle Scholar
  92. Schürmann S et al (2010) Second harmonic generation microscopy probes different states of motor protein interaction in myofibrils. Biophys J 99(6):1842–1851CrossRefPubMedPubMedCentralGoogle Scholar
  93. Schürmann S et al (2013) Label-free imaging of inflammatory bowel disease using multiphoton microscopy. Gastroenterology 145(3):514–516CrossRefGoogle Scholar
  94. Shahzad A, Köhler G (2011) Fluorescence correlation spectroscopy (FCS): a promising tool for biological research. Appl Spectrosc Rev 46(2):166–173CrossRefGoogle Scholar
  95. Shahzad A et al (2009) Emerging applications of fluorescence spectroscopy in medical microbiology field. J Transl Med 7(7):99CrossRefPubMedPubMedCentralGoogle Scholar
  96. Singh S, Bradley LT (1964) Three-photon absorption in Napthalene crystals by laser excitation. Phys Rev Lett 12(22):612–614CrossRefGoogle Scholar
  97. Singh AP, Wohland T (2014) Applications of imaging fluorescence correlation spectroscopy. Curr Opin Chem Biol 20:29–35CrossRefGoogle Scholar
  98. Stanciu SG et al (2014) Experimenting liver fibrosis diagnostic by two photon excitation microscopy and bag-of-features image classification. Sci Rep (4):4636Google Scholar
  99. Sun TY, Haberman AM, Greco V (2017) Preclinical advances with multiphoton microscopy in live imaging of skin cancers. J Invest Dermatol 137(2):282–287CrossRefGoogle Scholar
  100. Svoboda K et al (1997) In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385(6612):161–165CrossRefGoogle Scholar
  101. Swanson EA et al (1993) In vivo retinal imaging by optical coherence tomography. Opt Lett 18(21):1864–1866CrossRefGoogle Scholar
  102. Torres R, Genzen JR, Levene MJ (2012) Clinical measurement of von Willebrand factor by fluorescence correlation spectroscopy. Clin Chem 58(6):1010–1018CrossRefPubMedPubMedCentralGoogle Scholar
  103. Tripathy U et al (2013) Optimization of malaria detection based on third harmonic generation imaging of hemozoin. Anal Bioanal Chem 405(16):5431–5440CrossRefGoogle Scholar
  104. Tsai M-R, Chen C-H, Sun C-K (2009) Third and second harmonic generation imaging of human articular cartilage. 40Google Scholar
  105. Tsai M-R et al (2011) In vivo optical virtual biopsy of human oral mucosa with harmonic generation microscopy. Biomed Opt Express 2(8):2317–2328CrossRefPubMedPubMedCentralGoogle Scholar
  106. Tsai C-K et al (2012) Virtual optical biopsy of human adipocytes with third harmonic generation microscopy. Biomed Opt Express 4(1):178–186CrossRefPubMedPubMedCentralGoogle Scholar
  107. Tserevelakis GJ et al (2014) Label-free imaging of lipid depositions in C. elegans using third-harmonic generation microscopy. PLoS One 9(1):e84431CrossRefPubMedPubMedCentralGoogle Scholar
  108. Utino FL et al (2018) Second-harmonic generation imaging analysis can help distinguish sarcoidosis from tuberculoid leprosy. SPIE 23:1Google Scholar
  109. Vakoc BJ et al (2009) Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 15:1219CrossRefPubMedPubMedCentralGoogle Scholar
  110. Virgili, G., et al., Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy. The Cochrane database of systematic reviews, 2015. 1: p. CD008081-CD008081Google Scholar
  111. Wallace SJ et al (2008) Second-harmonic generation and two-photon-excited autofluorescence microscopy of cardiomyocytes: quantification of cell volume and myosin filaments. J Biomed Opt 13(6):064018CrossRefGoogle Scholar
  112. Wang X et al (2003) Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat Biotechnol 21:803CrossRefGoogle Scholar
  113. Wang X et al (2006) Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography, vol 11. SPIE, p 024015Google Scholar
  114. Weigelin B, Bakker G-J, Friedl P (2012) Intravital third harmonic generation microscopy of collective melanoma cell invasion: principles of interface guidance and microvesicle dynamics. Intravital 1(1):32–43CrossRefPubMedPubMedCentralGoogle Scholar
  115. Wruss J et al (2007) Attachment of VLDL receptors to an icosahedral virus along the 5-fold symmetry axis: multiple binding modes evidenced by fluorescence correlation spectroscopy. Biochemistry 46(21):6331–6339CrossRefGoogle Scholar
  116. Wu Z et al (2017) Multi-photon microscopy in cardiovascular research. Methods 130:79–89CrossRefGoogle Scholar
  117. Xie Z et al (2011) Evaluation of bladder microvasculature with high-resolution photoacoustic imaging. Opt Lett 36(24):4815–4817CrossRefPubMedPubMedCentralGoogle Scholar
  118. Yao K et al (2008) Clinical application of magnification endoscopy and narrow-band imaging in the upper gastrointestinal tract: new imaging techniques for detecting and characterizing gastrointestinal neoplasia. Gastrointest Endosc Clin N Am 18(3):415–433CrossRefGoogle Scholar
  119. Yao J et al (2011) Label-free oxygen-metabolic photoacoustic microscopy in vivo. J Biomed Opt 16(7):076003–076003CrossRefPubMedPubMedCentralGoogle Scholar
  120. Yeh AT et al (2004) Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model. J Biomed Opt 9(2):248–253CrossRefGoogle Scholar
  121. Yelin D, Silberberg Y (1999) Laser scanning third-harmonic-generation microscopy in biology. Opt Express 5(8):169–175CrossRefGoogle Scholar
  122. Yew E, Rowlands C, So PTC (2014) Application of multiphoton microscopy in dermatological studies: a mini-review. J Innov Opt Health Sci 7(5):1330010–1330010CrossRefPubMedPubMedCentralGoogle Scholar
  123. Yuste R, Denk W (1995) Dendritic spines as basic functional units of neuronal integration. Nature 375(6533):682–684CrossRefGoogle Scholar
  124. Zagaynova E, et al Metabolic imaging of tumor for diagnosis and response for therapy. SPIE BiOS. 2018. SPIEGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Bioscience and BioengineeringIIT GuwahatiGuwahatiIndia
  2. 2.Institute of Applied PhysicsVienna University of TechnologyViennaAustria
  3. 3.Department of Applied PhysicsIIT (ISM)DhanbadIndia

Personalised recommendations