Advancements and New Technologies in Drug Delivery System

  • Ajay Kumar Sahi
  • Pooja Verma
  • Pallawi
  • Kameshwarnath Singh
  • Sanjeev Kumar MahtoEmail author


Drug delivery is defined as administration of drug component inside the body, and the system adopted for the same is known as drug delivery system. Advancements in the drug delivery system are gaining more attention and popularity due to the use of nanoformulations that enables efficient, effective and specific targeting of the drug. Several drug carriers such as liposomes, aptamers, quantum dots, peptide, polymers, metals and magnetic nanoparticle-based delivery are categorised as advanced generation drug delivery systems. The structural complexity of nano-based drug delivery system, e.g. nanocapsules, dendrimers, nanosponges, nanocrystals, nanogels and nanocapsules, provides high surface area for precise targeting in the field of cancer management and several other life-threatening diseases.


Drug delivery system Nanoformulations Nanotechnology Aptamers Quantum dots 



This work was financially supported by a DST-INSPIRE (DST/INSPIRE/04/2013/000836) research grant from the Department of Science and Technology, Government of India. The authors would also like to thank the Institute Research Project (IRP) scheme for individual faculty provided by the Indian Institute of Technology (Banaras Hindu University) for the development of state-of-the-art facilities.


  1. Alley SC, Okeley NM, Senter PD (2010) Antibody-drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol 14:529–537CrossRefGoogle Scholar
  2. Amstad E et al (2009) Surface functionalization of single superparamagnetic iron oxide nanoparticles for targeted magnetic resonance imaging. Small Weinh Bergstr Ger 5:1334–1342CrossRefGoogle Scholar
  3. Bagalkot V, Farokhzad OC, Langer R, Jon S (2006) An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Ed Eng 45:8149–8152CrossRefGoogle Scholar
  4. Bamrungsap S et al (2012) Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine 7:1253–1271CrossRefGoogle Scholar
  5. Bates PJ, Choi EW, Nayak LV (2009) G-rich oligonucleotides for cancer treatment. Methods Mol Biol Clifton NJ 542:379–392CrossRefGoogle Scholar
  6. Bhat M, Shenoy SD, Udupa N, Srinivas CR (1995) Optimization of delivery of betamethasone-dipropionate from skin preparation. Indian Drugs 32:211–214Google Scholar
  7. BrentuximabVedotin (ADCETRIS®) Seattle genetics. Available at:
  8. Çağdaş M, Sezer AD, Bucak S (2014) Liposomes as potential drug carrier systems for drug delivery. Appl Nanotechnol Drug Deliv.
  9. Catuogno S, Esposito CL, de Franciscis V (2016) Aptamer-mediated targeted delivery of therapeutics: an update. Pharm Basel Switz 9:69Google Scholar
  10. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018CrossRefGoogle Scholar
  11. Charoenphol P, Bermudez H (2014) Aptamer-targeted DNA nanostructures for therapeutic delivery. Mol Pharm 11:1721–1725CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chertok B et al (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29:487–496CrossRefGoogle Scholar
  13. Cortesi R, Esposito E, Luca G, Nastruzzi C (2002) Production of lipospheres as carriers for bioactive compounds. Biomaterials 23:2283–2294CrossRefGoogle Scholar
  14. Cui B et al (2007) One at a time, live tracking of NGF axonal transport using quantum dots. Proc Natl Acad Sci U S A 104:13666–13671CrossRefPubMedPubMedCentralGoogle Scholar
  15. De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(2):133CrossRefPubMedPubMedCentralGoogle Scholar
  16. Delehanty JB et al 2006 Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery. PubMed – NCBI. Available at: Accessed: 5th Jan 2019
  17. Delehanty JB, Mattoussi H, Medintz IL (2009) Delivering quantum dots into cells: strategies, progress and remaining issues. Anal Bioanal Chem 393:1091–1105CrossRefGoogle Scholar
  18. Ding M et al (2013) Toward the next-generation nanomedicines: design of multifunctional multiblock polyurethanes for effective cancer treatment. ACS Nano 7:1918–1928CrossRefGoogle Scholar
  19. Ducry L, Stump B (2010) Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem 21:5–13CrossRefGoogle Scholar
  20. Dunn GP et al (2012) Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev 26:756–784CrossRefPubMedPubMedCentralGoogle Scholar
  21. Elbaz NM, Khalil IA, Abd-Rabou AA, El-Sherbiny IM (2016) Chitosan-based nano-in-microparticle carriers for enhanced oral delivery and anticancer activity of propolis. Int J Biol Macromol 92:254–269CrossRefGoogle Scholar
  22. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822CrossRefGoogle Scholar
  23. Fakhoury JJ, McLaughlin CK, Edwardson TW, Conway JW, Sleiman HF (2014) Development and characterization of gene silencing DNA cages. Biomacromolecules 15:276–282CrossRefGoogle Scholar
  24. Fayad L et al (2008) Safety and clinical activity of the anti-CD22 Immunoconjugate InotuzumabOzogamicin (CMC-544) in combination with rituximab in follicular lymphoma or diffuse large B-cell lymphoma: preliminary report of a phase 1/2 study. Blood 112:266–266Google Scholar
  25. Feng M, Zhong LX, Zhan ZY, Huang ZH, Xiong JP (2017) Enhanced antitumor efficacy of resveratrol-loaded nanocapsules in colon cancer cells: physicochemical and biological characterization. Eur Rev Med Pharmacol Sci 21(2):375–382PubMedGoogle Scholar
  26. Gattenlöhner S et al (2010) A human recombinant autoantibody-based immunotoxin specific for the fetal acetylcholine receptor inhibits rhabdomyosarcoma growth in vitro and in a murine transplantation model. J Biomed Biotechnol 2010:187621–187621CrossRefPubMedPubMedCentralGoogle Scholar
  27. Goldenberg DM (2007) Radiolabelled monoclonal antibodies in the treatment of metastatic cancer. Curr Oncol 14:39–42CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gu F et al (2008) Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci U S A 105:2586–2591CrossRefPubMedPubMedCentralGoogle Scholar
  29. He J et al (2010) Targeting prostate cancer cells in vivo using a rapidly internalizing novel human single-chain antibody fragment. J Nucl Med Off Publ Soc Nucl Med 51:427–432Google Scholar
  30. He K et al (2017) The efficacy assessments of alkylating drugs induced by nano-Fe3O4/CA for curing breast and hepatic cancer. Spectrochim Acta A Mol Biomol Spectrosc 173:82–86CrossRefGoogle Scholar
  31. Heitner T et al (2001) Selection of cell binding and internalizing epidermal growth factor receptor antibodies from a phage display library. J Immunol Methods 248:17–30CrossRefGoogle Scholar
  32. Hu R et al (2014) DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery. Angew Chem Int Ed Eng 53:5821–5826CrossRefGoogle Scholar
  33. Hua X-W, Bao Y-W, Wu F-G (2018) Fluorescent carbon quantum dots with intrinsic nucleolus-targeting capability for nucleolus imaging and enhanced cytosolic and nuclear drug delivery. ACS Appl Mater Interfaces 10:10664–10677CrossRefGoogle Scholar
  34. Jabbari A, Sadeghian H (2012) Amphiphilic cyclodextrins, synthesis, utilities and application of molecular modeling in their design. Recent Adv Nov Drug Carr Syst.
  35. Jain KK (ed) (2008) Drug delivery systems, vol 2. Humana press, TotowaGoogle Scholar
  36. Jensen SA et al (2013) Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med 5:209ra152CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jiang Q et al (2012) DNA origami as a carrier for circumvention of drug resistance. J Am Chem Soc 134:13396–13403CrossRefGoogle Scholar
  38. Johnson BK, Prud’homme RK (2003) Flash nanoprecipitation of organic actives and block copolymers using a confined impinging jets mixer. Aust J Chem 56:1021–1024CrossRefGoogle Scholar
  39. Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41:2971–3010CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kang WJ, Chae JR, Cho YL, Lee JD, Kim S (2009) Multiplex imaging of single tumor cells using quantum-dot-conjugated aptamers. Small Weinh Bergstr Ger 5:2519–2522CrossRefGoogle Scholar
  41. Kang T et al (2017) Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials 136:98–114CrossRefGoogle Scholar
  42. Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550CrossRefGoogle Scholar
  43. Kikkeri R, Lepenies B, Adibekian A, Laurino P, Seeberger PH (2009) In vitro imaging and in vivo liver targeting with carbohydrate capped quantum dots. J Am Chem Soc 131:2110–2112CrossRefGoogle Scholar
  44. Kim J-E, Park Y-J (2017) Paclitaxel-loaded hyaluronan solid nanoemulsions for enhanced treatment efficacy in ovarian cancer. Int J Nanomedicine 12:645. Scholar
  45. Klostergaard J et al (2007) Magnetic vectoring of magnetically responsive nanoparticles within the murine peritoneum. J Magn Magn Mater 311:330–335CrossRefGoogle Scholar
  46. Klostergaard J, Bankson J, Woodward W, Gibson D, Seeney C (2010) Magnetically-responsive nanoparticles for vectored delivery of cancer therapeutics. AIP Conf Proc 1311:382–387CrossRefGoogle Scholar
  47. Klostranec JM, Chan WCW (2006) Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 18:1953–1964CrossRefGoogle Scholar
  48. Kotula JW et al (2012) Aptamer-mediated delivery of splice-switching oligonucleotides to the nuclei of cancer cells. Nucleic Acid Ther 22:187–195CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kumar CSSR, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63:789–808CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lavik EB, Kuppermann BD, Humayun MS (2012) Drug delivery. In: Retina, 5th edn. Allen Institute for Artificial Intelligence, Seattle, pp 734–745. Scholar
  51. Lee N, Hyeon T (2012) Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 41:2575–2589CrossRefGoogle Scholar
  52. Lee H et al (2012) Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol 7:389–393CrossRefPubMedPubMedCentralGoogle Scholar
  53. Levy-Nissenbaum E, Radovic-Moreno AF, Wang AZ, Langer R, Farokhzad OC (2008) Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol 26:442–449CrossRefGoogle Scholar
  54. Lherm C, Müller RH, Puisieux F, Couvreur P (1992) Alkylcyanoacrylate drug carriers: II. Cytotoxicity of cyanoacrylate nanoparticles with different alkyl chain length. Int J Pharm 84:13–22CrossRefGoogle Scholar
  55. Liao W et al (2018) Fabrication of ultra-small WS2 quantum dots-coated periodic mesoporous organosilica nanoparticles for intracellular drug delivery and synergistic chemo-photothermal therapy. OncoTargetsTher 11:1949–1960Google Scholar
  56. Lidke DS et al (2004) Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 22:198–203CrossRefGoogle Scholar
  57. Lieleg O et al (2007) Specific integrin labeling in living cells using functionalized nanocrystals. Small Weinh Bergstr Ger 3:1560–1565CrossRefGoogle Scholar
  58. Liu W et al (2008) Compact biocompatible quantum dots functionalized for cellular imaging. J Am Chem Soc 130:1274–1284CrossRefPubMedPubMedCentralGoogle Scholar
  59. Lundin J et al (2002) Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL). Blood 100:768–773CrossRefGoogle Scholar
  60. Medintz IL et al 2005 Quantum dot bioconjugates for imaging, labelling and sensing. PubMed – NCBI. Available at: Accessed: 5th Jan 2019
  61. Mok H, Zhang M (2013) Superparamagnetic iron oxide nanoparticle-based delivery systems for biotherapeutics. Expert Opin Drug Deliv 10:73–87CrossRefGoogle Scholar
  62. Nahar S, Nayak AK, Ghosh A, Subudhi U, Maiti S (2017) Enhanced and synergistic downregulation of oncogenic miRNAs by self-assembled branched DNA. Nanoscale 10:195–202CrossRefGoogle Scholar
  63. Nielsen UB et al (2002) Therapeutic efficacy of anti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis. Biochim Biophys Acta 1591:109–118CrossRefGoogle Scholar
  64. Oh JK, Park JM (2011) Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Prog Polym Sci 36:168–189CrossRefGoogle Scholar
  65. Öztürk K, Esendağlı G, Gürbüz MU, Tülü M, Çalış S (2017) Effective targeting of gemcitabine to pancreatic cancer through PEG-cored Flt-1 antibody-conjugated dendrimers. Int J Pharm 517:157–167CrossRefGoogle Scholar
  66. Park K (2014) Controlled drug delivery systems: past forward and future back. J Control Release Off 190:3–8CrossRefGoogle Scholar
  67. Pathak Y, Benita S (2012a) Antibody-mediated drug delivery systems: concepts, technology, and applications. Wiley, HobokenCrossRefGoogle Scholar
  68. Pathak Y, Benita S (2012b) Antibody-mediated drug delivery systems: concepts, technology, and applications. Wiley, HobokenCrossRefGoogle Scholar
  69. Patri AK, Majoros IJ, Baker JR (2002) Dendritic polymer macromolecular carriers for drug delivery. Curr Opin Chem Biol 6:466–471CrossRefGoogle Scholar
  70. Prasad M et al (2018) Nanotherapeutics: an insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother 97:1521–1537CrossRefGoogle Scholar
  71. Qian H et al (2017) Protecting microRNAs from RNase degradation with steric DNA nanostructures. Chem Sci 8:1062–1067CrossRefGoogle Scholar
  72. Qiao R, Yang C, Gao M (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 19:6274–6293CrossRefGoogle Scholar
  73. Ramakrishna D, Rao P (2011) Nanoparticles: is toxicity a concern? EJIFCC 22:92–101Google Scholar
  74. Rao PR, Diwan PV (1997) Permeability studies of cellulose acetate free films for transdermal use: influence of plasticizers. Pharm ActaHelv 72:47–51Google Scholar
  75. Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223CrossRefPubMedPubMedCentralGoogle Scholar
  76. Smith BR et al (2008) Real-time intravital imaging of RGD-quantum dot binding to luminal endothelium in mouse tumor neovasculature. Nano Lett 8:2599–2606CrossRefPubMedPubMedCentralGoogle Scholar
  77. Soundararajan S, Chen W, Spicer EK, Courtenay-Luck N, Fernandes DJ (2008) The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res 68:2358–2365CrossRefGoogle Scholar
  78. Stacker SA, Achen MG, Jussila L, Baldwin ME, Alitalo K (2002) Lymphangiogenesis and cancer metastasis. Nat Rev Cancer 2:573–583CrossRefGoogle Scholar
  79. Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265CrossRefPubMedPubMedCentralGoogle Scholar
  80. Sun W et al (2015) Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew Chem Int Ed Eng 54:12029–12033CrossRefGoogle Scholar
  81. Susumu K et al (2007) Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J Am Chem Soc 129:13987–13996CrossRefGoogle Scholar
  82. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510CrossRefGoogle Scholar
  83. Turturro F (2007) Denileukindiftitox: a biotherapeutic paradigm shift in the treatment of lymphoid-derived disorders. Expert Rev Anticancer Ther 7:11–17CrossRefGoogle Scholar
  84. Varkouhi AK, Scholte M, Storm G, Haisma HJ (2011) Endosomal escape pathways for delivery of biologicals. J Control Release Off 151:220–228CrossRefGoogle Scholar
  85. Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304CrossRefGoogle Scholar
  86. Wang AZ et al (2010) ChemoRad nanoparticles: a novel multifunctional nanoparticle platform for targeted delivery of concurrent chemoradiation. Nanomedicine (London) 5:361. Scholar
  87. Wanigasekara J, Witharana C (2016) Applications of nanotechnology in drug delivery and design-an insight. Curr Trends Biotechnol Pharm 10(1):78–91Google Scholar
  88. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507CrossRefGoogle Scholar
  89. Wen J, Tao W, Hao S, Iyer SP, Zu Y (2016) A unique aptamer-drug conjugate for targeted therapy of multiple myeloma. Leukemia 30:987–991CrossRefGoogle Scholar
  90. Werner ME et al (2011) Folate-targeted nanoparticle delivery of chemo- and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials 32:8548–8554CrossRefPubMedPubMedCentralGoogle Scholar
  91. Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H (2012) Nanoparticles as drug delivery systems. Pharmacol Rep PR 64:1020–1037CrossRefGoogle Scholar
  92. Wu C et al (2013) Building a multifunctional aptamer-based DNA nanoassembly for targeted cancer therapy. J Am Chem Soc 135:18644–18650CrossRefPubMedPubMedCentralGoogle Scholar
  93. Wu W, Wu Z, Yu T, Jiang C, Kim W-S (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16:023501CrossRefPubMedPubMedCentralGoogle Scholar
  94. Yang D et al (2016a) In vivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide. Biomaterials 104:361–371CrossRefPubMedPubMedCentralGoogle Scholar
  95. Yang Y et al (2016b) Near-infrared light-activated cancer cell targeting and drug delivery with aptamer-modified nanostructures. Nano Res 9:139–148CrossRefGoogle Scholar
  96. Younes A et al (2008) Objective responses in a phase I dose-escalation study of SGN-35, a novel antibody-drug conjugate (ADC) targeting CD30, in patients with relapsed or refractory Hodgkin lymphoma. J Clin Oncol 26:8526–8526CrossRefGoogle Scholar
  97. Yun YH, Lee BK, Park K (2015) Controlled drug delivery: historical perspective for the next generation. J Control Release 219:2–7CrossRefPubMedPubMedCentralGoogle Scholar
  98. Zaman MB, Baral TN, Zhang J, Whitfield D, Yu K (2009) Single-domain antibody functionalized CdSe/ZnS quantum dots for cellular imaging of cancer cells. J Phys Chem C 113:496–499CrossRefGoogle Scholar
  99. Zhang H et al (2009) Detection and downregulation of type I IGF receptor expression by antibody-conjugated quantum dots in breast cancer cells. Breast Cancer Res Treat 114:277–285CrossRefGoogle Scholar
  100. Zhang Q et al (2014) DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano 8:6633–6643CrossRefGoogle Scholar
  101. Zhang H et al (2015) A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery. Sci Rep 5:10099CrossRefPubMedPubMedCentralGoogle Scholar
  102. Zhao Y-X et al (2012) DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano 6:8684–8691CrossRefGoogle Scholar
  103. Zheng J et al (2006) Cellular imaging and surface marker labeling of hematopoietic cells using quantum dot bioconjugates. Lab Hematol Off Publ Int Soc Lab Hematol 12:94–98Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ajay Kumar Sahi
    • 1
  • Pooja Verma
    • 1
  • Pallawi
    • 2
  • Kameshwarnath Singh
    • 2
  • Sanjeev Kumar Mahto
    • 1
    • 3
    Email author
  1. 1.Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
  2. 2.Department of Rachana Sharir, Faculty of Ayurveda, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
  3. 3.Centre for Advanced Biomaterials and Tissue EngineeringIndian Institute of Technology (Banaras Hindu University)VaranasiIndia

Personalised recommendations