Pathophysiology of the Disease Causing Physical Disability

  • Sachchida Nand Rai
  • Hareram Birla
  • Saumitra Sen Singh
  • Walia Zahra
  • Aaina Singh Rathore
  • Hagera Dilnashin
  • Surya Pratap Singh


An “individual with a disability” has a physical impairment or record of such an impairment that substantially limits a “major life activity.” Today, “person with a disability” is a more widely used term than “handicapped” as this phrasing reflects a positive approach by putting people first, not the disability. The disability term is used to refer an individual functioning including motor, sensory, cognitive, intellectual impairment, mental illness, and various types of chronic diseases (Oliver 1995; Crow 2008).


  1. Al-Araji AH, Oger J (2005) Reappraisal of Lhermitte’s sign in multiple sclerosis. Mult Scler J 11(4):398–402CrossRefGoogle Scholar
  2. Bax M et al (2005) Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol 47(8):571–576CrossRefGoogle Scholar
  3. Betarbet R et al (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3(12):1301CrossRefGoogle Scholar
  4. Bhattacharyya KB (2016) The story of George Huntington and his disease. Ann Indian Acad Neurol 19(1):25CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bitsch A et al (2000) Acute axonal injury in multiple sclerosis: correlation with demyelination and inflammation. Brain 123(6):1174–1183CrossRefGoogle Scholar
  6. Chandra V et al (2006) Neurological disorders. In: Disease control priorities. World Bank, Washington, DC, p 21Google Scholar
  7. Cho HJ et al (2012) MicroRNA-205 regulates the expression of Parkinson’s disease-related leucine-rich repeat kinase 2 protein. Hum Mol Genet 22(3):608–620CrossRefPubMedPubMedCentralGoogle Scholar
  8. Clifford DB, Trotter JL (1984) Pain in multiple sclerosis. Arch Neurol 41(12):1270–1272CrossRefGoogle Scholar
  9. Corti O, Lesage S, Brice A (2011) What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev 91(4):1161–1218CrossRefGoogle Scholar
  10. Crow KL (2008) Four types of disabilities: their impact on online learning. TechTrends 52(1):51–55CrossRefGoogle Scholar
  11. Ebers GC (2008) Environmental factors and multiple sclerosis. Lancet Neurol 7(3):268–277CrossRefPubMedPubMedCentralGoogle Scholar
  12. Focke NK et al (2011) Differentiation of typical and atypical Parkinson syndromes by quantitative MR imaging. Am J Neuroradiol 32(11):2087–2092CrossRefPubMedPubMedCentralGoogle Scholar
  13. Folstein SE, Brandt J, Folstein MF (1990) Huntington’s disease. Oxford University Press, New YorkGoogle Scholar
  14. Freeman JM, Nelson KB (1988) Intrapartum asphyxia and cerebral palsy. Pediatrics 82(2):240–249PubMedPubMedCentralGoogle Scholar
  15. Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis—the plaque and its pathogenesis. N Engl J Med 354(9):942–955CrossRefGoogle Scholar
  16. Geurts JJ, Barkhof F (2008) Grey matter pathology in multiple sclerosis. Lancet Neurol 7(9):841–851CrossRefPubMedPubMedCentralGoogle Scholar
  17. Goetz CG (2011) The history of Parkinson’s disease: early clinical descriptions and neurological therapies. Cold Spring Harb Perspect Med 1(1):a008862CrossRefPubMedPubMedCentralGoogle Scholar
  18. Goodin DS et al (2002) Disease modifying therapies in multiple sclerosis. Neurology 58(2):169–178CrossRefGoogle Scholar
  19. Guehl D et al (1999) Trichloroethylene and parkinsonism: a human and experimental observation. Eur J Neurol 6(5):609–611CrossRefGoogle Scholar
  20. Hannan AJ (2004) Molecular mediators, environmental modulators and experience-dependent synaptic dysfunction in Huntington’s disease. Acta Biochim Pol Engl Ed 51:415–430Google Scholar
  21. Indaco A et al (1994) Chronic and acute pain syndromes in patients with multiple sclerosis. Acta Neurol 16(3):97Google Scholar
  22. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368–376CrossRefGoogle Scholar
  23. Jimenez-Sanchez M et al (2016) Huntington’s disease: mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb Perspect Med 7:a024240CrossRefGoogle Scholar
  24. Johnston MV, Hagberg H (2007) Sex and the pathogenesis of cerebral palsy. Dev Med Child Neurol 49(1):74–78CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jones MW et al (2007) Cerebral palsy: introduction and diagnosis (part I). J Pediatr Health Care 21(3):146–152CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kala SV, Jadhav AL (1995) Region-specific alterations in dopamine and serotonin metabolism in brains of rats exposed to low levels of lead. Neurotoxicology 16(2):297–308PubMedPubMedCentralGoogle Scholar
  27. Li S-H, Li X-J (2004) Huntingtin–protein interactions and the pathogenesis of Huntington’s disease. Trends Genet 20(3):146–154CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lim SY, Lang AE (2010) The nonmotor symptoms of Parkinson’s disease—an overview. Mov Disord 25(S1):S123–S130CrossRefPubMedPubMedCentralGoogle Scholar
  29. Louis ED, Frucht SJ (2007) Prevalence of essential tremor in patients with Parkinson’s disease vs. Parkinson-plus syndromes. Mov Disord 22(10):1402–1407CrossRefPubMedPubMedCentralGoogle Scholar
  30. Love S, Coakham HB (2001) Trigeminal neuralgia: pathology and pathogenesis. Brain 124(12):2347–2360CrossRefGoogle Scholar
  31. Marchand S (2008) The physiology of pain mechanisms: from the periphery to the brain. Rheum Dis Clin N Am 34(2):285–309CrossRefGoogle Scholar
  32. McPhee SJ, Hammer GD (1995) Pathophysiology of disease: an introduction to clinical medicine. Lange Medical Books, New YorkGoogle Scholar
  33. Merskey H (1991) The definition of pain. Eur Psychiatry 6(4):153–159Google Scholar
  34. Milo R, Kahana E (2010) Multiple sclerosis: geoepidemiology, genetics and the environment. Autoimmun Rev 9(5):A387–A394CrossRefGoogle Scholar
  35. Minear W (1956) A classification of cerebral palsy. Pediatrics 18(5):841–852PubMedGoogle Scholar
  36. Mo C, Hannan AJ, Renoir T (2015) Environmental factors as modulators of neurodegeneration: insights from gene–environment interactions in Huntington’s disease. Neurosci Biobehav Rev 52:178–192CrossRefGoogle Scholar
  37. Mohan H (2005) Textbook of pathology. Jaypee Brothers Medical Publishers, New Delhi.CrossRefGoogle Scholar
  38. Moulin DE, Foley KM, Ebers GC (1988) Pain syndromes in multiple sclerosis. Neurology 38(12):1830–1830CrossRefGoogle Scholar
  39. Navarro-Yepes J et al (2014) Antioxidant gene therapy against neuronal cell death. Pharmacol Ther 142(2):206–230CrossRefGoogle Scholar
  40. Nelson KB, Willoughby RE (2000) Infection, inflammation and the risk of cerebral palsy. Curr Opin Neurol 13(2):133–139CrossRefGoogle Scholar
  41. O’connor AB et al (2008) Pain associated with multiple sclerosis: systematic review and proposed classification. Pain 137(1):96–111CrossRefPubMedPubMedCentralGoogle Scholar
  42. Oliver M (1995) Understanding disability: from theory to practice. Macmillan International Higher Education, BasingstokeGoogle Scholar
  43. Orrell RW (2005) Multiple sclerosis: the history of a disease. Demos Medical Publishing, New YorkGoogle Scholar
  44. Pahwa R, Lyons KE (2013) Handbook of Parkinson’s disease. CRC Press, Boca RatonCrossRefGoogle Scholar
  45. Panteliadis C, Panteliadis P, Vassilyadi F (2013) Hallmarks in the history of cerebral palsy: from antiquity to mid-20th century. Brain and Development 35(4):285–292CrossRefGoogle Scholar
  46. Pavlou MAS, Outeiro TF (2017) Epigenetics in Parkinson’s disease. In: Neuroepigenomics in aging and disease. Springer, Cham, pp 363–390CrossRefGoogle Scholar
  47. Perlman JM (1997) Intrapartum hypoxic-ischemic cerebral injury and subsequent cerebral palsy: medicolegal issues. Pediatrics 99(6):851–859CrossRefGoogle Scholar
  48. Popescu BFG, Pirko I, Lucchinetti CF (2013) Pathology of multiple sclerosis: where do we stand? Continuum Lifelong Learn Neurol 19(4 Multiple Sclerosis):901CrossRefGoogle Scholar
  49. Purkerson-Parker S, McDaniel KL, Moser VC (2001) Dopamine transporter binding in the rat striatum is increased by gestational, perinatal, and adolescent exposure to heptachlor. Toxicol Sci 64(2):216–223CrossRefGoogle Scholar
  50. Rappold PM et al (2011) Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3. Proc Natl Acad Sci 108(51):20766–20771CrossRefPubMedPubMedCentralGoogle Scholar
  51. Raymond LA et al (2011) Pathophysiology of Huntington’s disease: time-dependent alterations in synaptic and receptor function. Neuroscience 198:252–273CrossRefPubMedPubMedCentralGoogle Scholar
  52. Reddihough DS, Collins KJ (2003) The epidemiology and causes of cerebral palsy. Aust J Physiother 49(1):7–12CrossRefPubMedPubMedCentralGoogle Scholar
  53. Reid S et al (2006) Factor V Leiden mutation: a contributory factor for cerebral palsy? Dev Med Child Neurol 48(1):14–19CrossRefPubMedPubMedCentralGoogle Scholar
  54. Reiner A et al (1988) Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci 85(15):5733–5737CrossRefPubMedPubMedCentralGoogle Scholar
  55. Rosenbaum P et al (2007) A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl 109(Suppl 109):8–14PubMedPubMedCentralGoogle Scholar
  56. Sankar C, Mundkur N (2005) Cerebral palsy-definition, classification, etiology and early diagnosis. Indian J Pediatr 72(10):865–868CrossRefPubMedPubMedCentralGoogle Scholar
  57. Smith KJ, McDonald W (1999) The pathophysiology of multiple sclerosis⋮ the mechanisms underlying the production of symptoms and the natural history of the disease. Philos Trans R Soc Lond Ser B Biol Sci 354(1390):1649–1673CrossRefGoogle Scholar
  58. Solaro C, Trabucco E, Uccelli MM (2013) Pain and multiple sclerosis: pathophysiology and treatment. Curr Neurol Neurosci Rep 13(1):320CrossRefPubMedPubMedCentralGoogle Scholar
  59. Steffan JS et al (2004) SUMO modification of huntingtin and Huntington’s disease pathology. Science 304(5667):100–104CrossRefPubMedPubMedCentralGoogle Scholar
  60. Steiner I, Nisipianu P, Wirguin I (2001) Infection and the etiology and pathogenesis of multiple sclerosis. Curr Neurol Neurosci Rep 1(3):271–276CrossRefGoogle Scholar
  61. Torfs CP et al (1990) Prenatal and perinatal factors in the etiology of cerebral palsy. J Pediatr 116(4):615–619CrossRefGoogle Scholar
  62. Tselis A (2011) Evidence for viral etiology of multiple sclerosis. In: Seminars in neurology. Thieme Medical Publishers, Inc., New YorkGoogle Scholar
  63. Vale TC, Cardoso F (2015) Chorea: a journey through history. Tremor Other Hyperkinet Mov 5:pii: tre-5-296Google Scholar
  64. van Dellen A, Hannan AJ (2004) Genetic and environmental factors in the pathogenesis of Huntington’s disease. Neurogenetics 5(1):9–17CrossRefGoogle Scholar
  65. Verina T et al (2011) Manganese exposure induces microglia activation and dystrophy in the substantia nigra of non-human primates. Neurotoxicology 32(2):215–226CrossRefGoogle Scholar
  66. Vonsattel J-P et al (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44(6):559–577CrossRefGoogle Scholar
  67. Wacker M, Holick MF (2013) Sunlight and vitamin D: a global perspective for health. Derm Endocrinol 5(1):51–108CrossRefGoogle Scholar
  68. Wagner SR, Greene FE (1978) Dieldrin-induced alterations in biogenic amine content of rat brain. Toxicol Appl Pharmacol 43(1):45–55CrossRefPubMedPubMedCentralGoogle Scholar
  69. Walker FO (2007) Huntington’s disease. Lancet 369(9557):218–228CrossRefPubMedPubMedCentralGoogle Scholar
  70. Watson RR, Killgore WD (2016) Nutrition and lifestyle in neurological autoimmune diseases: multiple sclerosis. Academic, AmsterdamGoogle Scholar
  71. Wexler NS (2004) Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Natl Acad Sci 101(10):3498–3503CrossRefGoogle Scholar
  72. Wexler NS et al (1987) Homozygotes for Huntington’s disease. Nature 326(6109):194–197CrossRefGoogle Scholar
  73. Wingerchuk DM, Carter JL (2014) Multiple sclerosis: current and emerging disease-modifying therapies and treatment strategies. Mayo Clin Proc 89(2):225–240. ElsevierCrossRefGoogle Scholar
  74. World Health Organization (1980) International classification of impairments, disabilities, and handicaps: a manual of classification relating to the consequences of disease, published in accordance with resolution WHA29. 35 of the Twenty-ninth World Health Assembly, May 1976Google Scholar
  75. Xiao W et al (2011) A genomic storm in critically injured humans. J Exp Med 208(13):2581–2590CrossRefPubMedPubMedCentralGoogle Scholar
  76. Yoon BH et al (1997) Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1β, and tumor necrosis factor-α), neonatal brain white matter lesions, and cerebral palsy. Am J Obstet Gynecol 177(1):19–26CrossRefGoogle Scholar
  77. Zecca L et al (2002) The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson’s disease. FEBS Lett 510(3):216–220CrossRefGoogle Scholar
  78. Zheng W, Monnot AD (2012) Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol Ther 133(2):177–188CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sachchida Nand Rai
    • 1
  • Hareram Birla
    • 1
  • Saumitra Sen Singh
    • 1
  • Walia Zahra
    • 1
  • Aaina Singh Rathore
    • 1
  • Hagera Dilnashin
    • 1
  • Surya Pratap Singh
    • 1
  1. 1.Department of Biochemistry, Institute of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations