Anatomically Real Microwave Tissue Phantoms

  • Gyanendra SheoranEmail author
  • Vineeta Kumari


Artificial phantoms or bio-models are the replicas of human body tissues, which are utilized for modeling of microwave propagation in tissues. These phantoms are highly needed while developing, optimizing, and evaluating microwave imaging systems. Such tissue imitations should ideally reflect the 3D structure of the human tissues. Overall, the phantoms play a key factor for initial design and development of systems. The phantoms/models act as a bridge for transferring the microwave-based lab setups to the commercial systems. This chapter includes all the aspects of the phantoms: dielectric properties, types of tissues, materials, structural properties, prospect of durability and reproducibility of phantoms with complementary properties, and applications.



The authors would like to acknowledge the assistance of Ms. Neelam Barak and Mr. Aijaz Ahmed of NIT Delhi in writing the book chapter.


  1. Bakar AA, Abbosh A, Sharpe P, Bialkowski ME, Wang Y (2011a) Heterogeneous breast phantom for ultra-wideband microwave imaging. Microw Opt Technol Lett 53(7):1595–1598CrossRefGoogle Scholar
  2. Bakar AA, Abbosh A, Bialkowski M (2011b) Fabrication and characterization of a heterogeneous breast phantom for testing an ultrawideband microwave imaging system. In: Proceedings of Asia-Pacific Microw Conference, Dec. 2011, pp 1414–1417Google Scholar
  3. Barbara OL, Declan LO, Martin HO, Porter E (2018) Microwave breast imaging: experimental tumour phantoms for the evaluation of new breast cancer diagnosis systems. Biomed Phys Eng Express 4(2):1–13Google Scholar
  4. Bini MG, Ignesti A, Millanta L, Olmi R, Rubino N, Vanni R (1984) The polyacrylamide as a phantom material for electromagnetic hyperthermia studies. IEEE Trans Biomed Eng 3:317–322CrossRefGoogle Scholar
  5. Bourqui J, Campbell MA, Williams T, Fear EC (2010) Antenna evaluation for ultra-wideband microwave imaging. Int J Antennas Propag 2010:1–8CrossRefGoogle Scholar
  6. Bourqui J, Sill JM, Fear EC (2012) A prototype system for measuring microwave frequency reflections from the breast. J Biomed Imaging 2012:1–12Google Scholar
  7. Burfeindt MJ, Colgan TJ, Mays RO, Shea JD, Behdad N, Veen BDV, Hagness SC (2012) MRI-derived 3D printed breast phantom for microwave breast imaging validation. IEEE Antennas Wireless Propag Lett 11:1610–1613CrossRefGoogle Scholar
  8. Castelló-palacios S, Garcia-pardo C, Fornes-leal A, Cardona N, Vallés-lluch A (2016) Tailor-made tissue phantoms based on acetonitrile solutions for microwave applications up to 18 ghz. IEEE Trans Microw Theory Technol 64(11):3987–3994CrossRefGoogle Scholar
  9. Chahat N, Zhadobov M, Sauleau R (2012) Broadband tissue-equivalent phantom for BAN applications at millimeter waves. IEEE Trans Microw Theory Technnol 60(7):2259–2266CrossRefGoogle Scholar
  10. Chahat N, Leduc C, Zhadobov M, Sauleau R (2013) Antennas and interaction with the body for body-centric wireless communications at millimeter-waves. In: Proceedings of European Conference on Antennas and Propagation, Apr. 2013, pp 772–775Google Scholar
  11. Chen ZN, Liu GC, See TS (2009) Transmission of RF signals between MICS loop antennas in free space and implanted in the human head. IEEE Trans Antennas Propag 57(6):1850–1854CrossRefGoogle Scholar
  12. Chou CK, Mcdougall JA, Chan KW, Luk KH (1991) Heating patterns of microwave applicators in inhomogeneous arm and thigh phantoms. Med Phys 18(6):1164–1170CrossRefPubMedPubMedCentralGoogle Scholar
  13. Craddock J, Nilavalan R, Leendertz J, Preece A, Benjamin R (2005) Experimental investigation of real aperture synthetically organised radar for breast cancer detection. In: Proceedings of IEEE Antennas Propagation Society International Symposium, July 2005, pp 179–182CrossRefGoogle Scholar
  14. Croteau J, Sill J, Williams T, Fear E (2009) Phantoms for testing radar-based microwave breast imaging. In: Proceedings of ANTEM/URSI International Symposium on Antenna Technology Application Electromagnetic Canadian Rad. Sci. Meeting, Feb. 2009, pp 1–4Google Scholar
  15. Cuyckens T (2010) Influence of the human body on the behaviour of monopole and patch antennas, Ph.D. dissertation, University Gent. [online]. Available:
  16. Davis CC, Balzano Q (2009) The international intercomparison of SAR measurements on cellular telephones. IEEE Trans Electromag Compat 51(2):210–216CrossRefGoogle Scholar
  17. Faenger B, Ley S, Helbig M, Sachs J, Hilger I, Jena F (2017) Breast phantom with a conductive skin layer and conductive 3D-printed anatomical structures for microwave imaging. In: 11th European Conference on Antennas and Propagation March 2017, pp 1065–1068CrossRefGoogle Scholar
  18. Fiaschetti G, Browne JE, Cavagnaro M, Farina L, Ruvio G (2018) Tissue mimicking materials for multi-modality breast phantoms. In: 2018 2nd URSI Atl. Radio Sci. Meet.(International Union of Radio Science URSI, 2018), pp 1–6Google Scholar
  19. Filho RHC, Oliveira RMD, Sobrinho CLSSD, Almeida AMD (2009) Parallel-FDTD and experimental results of SAR for flat and head phantoms@ 900 MHz. In: Proceedings of SBMO/IEEE MTT-S International Microwave and. Optoelectronics Conference, pp 373–378Google Scholar
  20. Gabriel C (2007) Tissue-equivalent material for hand phantoms. Phys Med Biol 52(14):4205–4210CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gabriel S, Lau RW, Gabriel C (1996a) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41(11):2251–2269CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gabriel S, Lau RW, Gabriel C (1996b) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41(11):2271–2293CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gajda G, Stuchly MA, Stuchly SS (1979) Mapping of the near-field pattern in simulated biological tissues. Electron Lett 15(4):120–121CrossRefGoogle Scholar
  24. Garrett J, Fear E (2014) Stable and flexible materials to mimic the dielectric properties of human soft tissues. IEEE Antennas Wireless Propag Lett 13:599–602CrossRefGoogle Scholar
  25. Garrett J, Member S, Fear E, Member S (2015) A new breast phantom with a durable skin layer for microwave breast imaging. IEEE Trans Antennas Propag 63(4):1693–1700CrossRefGoogle Scholar
  26. Guy AW, Chou C-K (1986) Specific absorption rates of energy in man models exposed to cellular UHF mobile-antenna fields. IEEE Trans Microw Theory Technol 34(6):671–680CrossRefGoogle Scholar
  27. Hahn C, Noghanian S (2012) Heterogeneous breast phantom development for microwave imaging using regression models. J Biomed Imaging 2012:1–12CrossRefGoogle Scholar
  28. Henriksson T, Joachimowicz N, Conessa C, Bolomey J-C (2010) Quantitative microwave imaging for breast cancer detection using a planar 2.45 GHz system. IEEE Trans Instrument Meas 59(10):2691–2699CrossRefGoogle Scholar
  29. Hombach V, Meier K, Burkhardt M, Kuhn E, Kuster N (1996) The dependence of EM energy absorption upon human head modeling at 900 MHz. IEEE Trans Microw Theory Technol 44(10):1865–1873CrossRefGoogle Scholar
  30. Ishido R, Onishi T, Saito K, Uebayashi S, Ito K (2004) A study on the solid phantoms for 3–6 GHz and evaluation of SAR distributions based on the thermographic method. In: Proceedings of IEEE International Symposium on Electromagnetic Compatibility, pp 577–580Google Scholar
  31. Islam MT, Samsuzzaman M, Kibria S, Singh MJ (2018) A homogeneous breast phantom measurement system with an improved modified microwave imaging antenna sensor. Sensors 18(9):1–23CrossRefGoogle Scholar
  32. Ito K, Okano Y, Hase A, Ida I (1998) A tissue-equivalent solid phantom for estimation of interaction between human head and handset antenna. In: Proceedings of IEEE-APS Conference Antennas and Propagation for Wireless Communications, Nov. 1998, pp 89–92Google Scholar
  33. Ito K, Furuya K, Okano Y, Hamada L (2001) Development and characteristics of a biological tissue-equivalent phantom for microwaves. Electron Commun Japan (Part I: Commun) 84:67–77CrossRefGoogle Scholar
  34. Joachimowicz N, Conessa C, Henriksson T, Duchene B (2014) Breast phantoms for microwave imaging. IEEE Antennas Wireless Propag Lett 13:1333–1336CrossRefGoogle Scholar
  35. Joachimowicz N, Duchêne B, Conessa C, Meyer O (2017) Reference phantoms for microwave imaging. In: 2017 11th European Conference on Antennas and Propagation Ref, pp 2719–2722CrossRefGoogle Scholar
  36. Jofre L, Hawley MS, Broquetas A, Reyes EDL, Ferrando M, Elias-Fuste AR (1990) Medical imaging with a microwave tomographic scanner. IEEE Trans Biomed Eng 37(3):303–312CrossRefPubMedPubMedCentralGoogle Scholar
  37. Johnson CC, Guy AW (1972) Nonionizing electromagnetic wave effects in biological materials and systems. Proc IEEE 60(6):692–718CrossRefGoogle Scholar
  38. Karathanasis KT, Gouzouasis IA, Karanasiou IS, Uzunoglu NK (2012) Experimental study of a hybrid microwave radiometry hyperthermia apparatus with the use of an anatomical head phantom. IEEE Trans Inf Technol Biomed 16(2):241–247CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kawai H, Tanaka S, Wake K, Watanabe S, Taki M, Uno T (2007) Localized exposure using an 8-shaped loop antenna system with a director for animal study in 1.5 GHz band. In: Proceedings of IEEE Asia-Pacific Microwave Conference, Dec. 2007, pp 1–4Google Scholar
  40. Kawamura T, Saito K, Kikuchi S, Takahashi M, Ito K (2009) Specific absorption rate measurement of birdcage coil for 3.0-T magnetic resonance imaging system employing thermographic method. IEEE Trans Microw Theory Technol 57(10):2508–2514CrossRefGoogle Scholar
  41. Kiarashi N, Nolte AC, Sturgeon GM, Segars WP, Ghate SV, Nolte LW, Samei E, Lo JY (2015) Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data. Med Phys 42(7):4116–4126CrossRefPubMedPubMedCentralGoogle Scholar
  42. Klemm M, Craddock IJ, Leendertz JA, Preece A, Benjamin R (2009) Radar-based breast cancer detection using a hemispherical antenna array experimental result. IEEE Trans Antennas Propag 57(6):1692–1704CrossRefGoogle Scholar
  43. Klemm M, Leendertz JA, Gibbins D, Craddock IJ, Preece A, Benjamin R (2010) Microwave radar-based breast cancer detection: imaging in inhomogeneous breast phantoms. IEEE Antennas Wireless Propag Lett 8:1349–1352CrossRefGoogle Scholar
  44. Kobayashi T, Nojima T, Yamada K, Uebayashi S (1993) Dry phantom composed of ceramics and its application to SAR estimation. IEEE Trans Microw Theory Technol 41(1):136–140CrossRefGoogle Scholar
  45. Koichi I (2007) Human body phantoms for evaluation of wearable and implantable antennas. In Second European Conference on Antennas and Propagation, EuCAP 2007, pp 1–6Google Scholar
  46. Kumari V, Sheoran G, Tirupathiraju K, Vyas R, Rao SA (2018) Development and analysis of anatomically real breast phantoms using different dispersion models. J Electron Imaging 27(5):051208(1–12)CrossRefGoogle Scholar
  47. Lazebnik M, Madsen EL, Frank GR, Hagness SC (2005) Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications. Phys Med Biol 50(18):4245–4258CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lazebnik M, McCartney L, Popovic D, Watkins CB, Lindstrom MJ, Harter J, Hagness SC (2007) A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries. Phys Med Biol 52(10):2637–2656CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lee J, Bang J, Choi J (2016) Realistic head phantom for evaluation of brain stroke localization methods using 3D printer. J Electromagn Eng Sci 16(4):254–258CrossRefGoogle Scholar
  50. Levick A, Land D, Hand J (2011) Validation of microwave radiometry for measuring the internal temperature profile of human tissue. Meas Sci Technol 22(6):1–8CrossRefGoogle Scholar
  51. Li X, Davis SK, Hagness SC, Weide DWVD, Veen BDV (2004) Microwave imaging via space-time beamforming: experimental investigation of tumor detection in multilayer breast phantoms. IEEE Trans Microw Theory Technol 52(8):1856–1865CrossRefGoogle Scholar
  52. Loh TH, Cheadle D, Rosenfeld L (2014) Radiation pattern measurement of a low-profile wearable antenna using an optical fibre and a solid anthropomorphic phantom. Electronics 3(3):462–473CrossRefGoogle Scholar
  53. Looi CK, Chen ZN (2005) Design of a human head equivalent phantom for ISM 2.4-GHz applications. Microw Opt Technol Lett 47(2):163–166CrossRefGoogle Scholar
  54. Looi CK, See TSP, Chen ZN (2005) Study of human head effects on the planar inverted-F antenna. In: Proceedings of IEEE International Workshop on Antenna Technology, Mar. 2005, pp 223–226Google Scholar
  55. Mashal A, Gao F, Hagness SC (2011) Heterogeneous anthropomorphic phantoms with realistic dielectric properties for microwave breast imaging experiments. Microw Opt Technol Lett 53:1896–1902CrossRefPubMedPubMedCentralGoogle Scholar
  56. Massoudi H, Durney CH, Barbar PW, Iskander MF (1979) Electromagnetic absorption in multi-layered cylindrical models of man. IEEE Trans Microwave Theory Tech 27(10):825–830CrossRefGoogle Scholar
  57. Mcdermott B, Porter E, Santorelli A, Divilly B, Morris L, Jones M, McGinley B, O’Halloran M (2017) Anatomically and dielectrically realistic microwave head phantom with circulation and reconfigurable lesions. Prog Electromagn Res B 78:47–60CrossRefGoogle Scholar
  58. Mobashsher AT, Abbosh A (2014) Three-dimensional human head phantom with realistic electrical properties and anatomy. IEEE Antennas Wireless Propag Lett 13:1401–1404CrossRefGoogle Scholar
  59. Mobashsher AT, Amin AM (2015) Artificial human phantoms. IEEE Microw Mag 16(6):42–62CrossRefGoogle Scholar
  60. Mobashsher AT, Abbosh AM, Wang Y (2014) Microwave system to detect traumatic brain injuries using compact unidirectional antenna and wideband transceiver with verification on realistic head phantom. IEEE Trans Microw Theory Technol 62(9):1826–1836CrossRefGoogle Scholar
  61. Mochizuki S, Wakayanagi H, Hamada T, Watanabe S, Taki M, Yamanaka Y, Shirai H (2007) Effects of ear shape and head size on simulated head exposure to a cellular phone. IEEE Trans Electromag Compat 49(3):512–518CrossRefGoogle Scholar
  62. Modiri A, Kiasaleh K (2013) Experimental results for a novel microwave radiator structure targeting non-invasive breast cancer detection. In: Proceedings of IEEE Global Hum Technology Conference., Oct. 2013, pp 203–208Google Scholar
  63. Mohammed BJ, Abbosh AM (2014) Realistic head phantom to test microwave systems for brain imaging. Microw Opt Technol Lett 56(4):979–982CrossRefGoogle Scholar
  64. Mohammed B, Abbosh A, Henin B, Sharpe P (2012) Head phantom for testing microwave systems for head imaging. In: Cairo International Biomedical Engineering Conference, pp 191–193Google Scholar
  65. Mohammed BJ, Abbosh AM, Mustafa S, Ireland D (2014) Microwave system for head imaging. IEEE Trans Instrument Meas 63(1):117–123CrossRefGoogle Scholar
  66. Mohd SMS, Norhudah S, Noor SR, Tharek RA (2015) Modeling of gelatin-based head phantom based on its electrical properties for wideband microwave imaging application. Appl Mech Mater 781:608–611CrossRefGoogle Scholar
  67. Monebhurrun V (2010) Conservativeness of the SAM phantom for the SAR evaluation in the child's head. IEEE Trans Magn 46(8):3477–3480CrossRefGoogle Scholar
  68. Moon KS, Choi HD, Lee AK, Cho KY, Yoon HG, Suh KS (2000) Dielectric properties of epoxy dielectrics carbon black composite for phantom materials at radio frequencies. J App Poly Sci 7(6):1294–1302CrossRefGoogle Scholar
  69. Mustafa S, Mohammed B, Abbosh A (2013) Novel preprocessing techniques for accurate microwave imaging of human brain. IEEE Antennas Wireless Propag Lett 12:460–463CrossRefGoogle Scholar
  70. Nadine J, Bernard D, Conessa C, Olivier M (2018) Anthropomorphic breast and head phantoms for microwave imaging. Diagnostics 8(4):1–12Google Scholar
  71. Nagaoka T, Togashi T, Saito K, Takahashi M, Ito K, Watanabe S (2007) An anatomically realistic whole-body pregnant-woman model and specific absorption rates for pregnant woman exposure to electromagnetic plane wave from 10 MHz to 2 GHz. Phys Med Biol 52:6731–6745CrossRefPubMedPubMedCentralGoogle Scholar
  72. Nishizawa S, Hashimoto O (1999) Effective shielding analysis for three-layered human models. IEEE Trans. Microwave Theory Technol 47(3):277–283CrossRefGoogle Scholar
  73. O’Halloran M, Lohfeld S, Ruvio G, Browne J, Krewer F, Ribeiro CO, Pita VCI, Conceicao RC, Jones E, Glavin M (2014) Development of anatomically and dielectrically accurate breast phantoms for microwave breast imaging applications. In: Proceedings of SPIE 9077 Radar Sensor Technology May 2014, pp 1–7Google Scholar
  74. Ogawa K, Matsuyoshi T (2001) An analysis of the performance of a handset diversity antenna influenced by head, hand, and shoulder effects at 900 MHz: part I – effective gain characteristics. IEEE Trans Vehic Technol 50(3):830–844CrossRefGoogle Scholar
  75. Okano Y, Ito K, Ida I, Takahashi M (2000) The SAR evaluation method by a combination of thermographic experiments and biological tissue-equivalent phantoms. IEEE Trans Microw Theory Technol 48(11):2094–2103CrossRefGoogle Scholar
  76. Omer M, Fear EC (2017) Automated 3D method for the construction of flexible and reconfigurable numerical breast models from MRI scans. Med Biol Eng Comput 56(6):1027–1040CrossRefPubMedPubMedCentralGoogle Scholar
  77. Ostadrahimi M, Reopelle R, Noghanian S, Pistorius S, Vahedi A, Safari F (2009) A heterogeneous breast phantom for microwave breast imaging. In: Proceedings of IEEE Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Sept. 2009, pp 2727–2730CrossRefGoogle Scholar
  78. Picher C, Anguera J, Andujar A, Puente C, Kahng S (2012) Analysis of the human head interaction in handset antennas with slotted ground planes. IEEE Antennas Propag Mag 54(2):36–56CrossRefGoogle Scholar
  79. Porter E, Fakhoury J, Oprisor R, Coates M, Popovic M (2010) Improved tissue phantoms for experimental validation of microwave breast cancer detection. In: Proceedings of Fourth European Conf. Antennas Propag., Apr. 2010, pp 1–5Google Scholar
  80. Porter E, Santorelli A, Bourdon A, Coulibaly D, Coates M, Popovi M (2011) Time-domain microwave breast cancer detection: experiments with comprehensive glandular phantoms. In: Proceedings of IEEE Asia-Pacific Microw Conference, Dec. 2011, pp 203–206Google Scholar
  81. Rodrigues DB, Maccarini PF, Salahi S, Oliveira TR, Pereira PJS, Limao-Vieira P, Snow BW, Reudink D, Stauffer PR (2014) Design and optimization of an ultra-wideband and compact microwave antenna for radiometric monitoring of brain temperature. IEEE Trans Biomed Eng 61(7):2154–2160CrossRefPubMedPubMedCentralGoogle Scholar
  82. Romeo S, Donato LD, Bucci OM, Catapano I, Crocco L, Scarfì MR, Massa R (2011) Dielectric characterization study of liquid-based materials for mimicking breast tissues. Microw Opt Technol Lett 53(6):1276–1280CrossRefGoogle Scholar
  83. Saraereh OA, Jayawardene M, McEvoy P, Vardaxoglou JC (2004) Simulation and experimental SAR and efficiency study for a dual-band PIFA handset antenna (GSM 900/DCS 1800) at varied distances from a phantom head. In: Proceedings of IEE Antenna Meas. SAR, May 2004, pp 5–8Google Scholar
  84. Scapaticci R, Bellizzi G, Catapano I, Crocco L, Bucci OM (2014) An effective procedure for MNP-enhanced breast Cancer microwave imaging. IEEE Trans Biomed Eng 61(4):1071–1079CrossRefPubMedPubMedCentralGoogle Scholar
  85. Schwerdt HN, Miranda FA, Chae J (2012a) A fully passive wireless backscattering neurorecording microsystem embedded in dispersive human-head phantom medium. IEEE Electron Device Lett 33(6):908–910CrossRefGoogle Scholar
  86. Schwerdt HN, Chae J, Miranda FA (2012b) Wireless performance of a fully passive neurorecording microsystem embedded in dispersive human head phantom. In: Proceedings of IEEE Antennas Propagation Society International Symposium., July 2012, pp 1–2Google Scholar
  87. Takimoto T, Onishi T, Saito K, Takahashi M, Uebayashi S, Ito K (2007) Characteristics of biological tissue equivalent phantoms applied to UWB communications. Electron Commun. Japan (Part I: Commun.) 90(5):48–55CrossRefGoogle Scholar
  88. Tamura H, Ishikawa Y, Kobayashi T (1997) A dry phantom material composed of ceramic and graphite powder. IEEE Trans Electromag Compat 39(2):132–137CrossRefGoogle Scholar
  89. Tell RA (1972) Microwave energy absorption in tissue, Twinbrook Research Laboratory technical report. EPA, Washington, DCGoogle Scholar
  90. Tunçay AH, Akduman I (2015) Realistic microwave breast models through T1-weighted 3-D MRI data. IEEE Trans Biomed Eng 62(2):688–698CrossRefPubMedPubMedCentralGoogle Scholar
  91. Vrba J, Karch J, Vrba D (2015) Phantoms for development of microwave sensors for noninvasive blood glucose monitoring. Int J Antennas Propag 2015:1CrossRefGoogle Scholar
  92. Wang L, Niu J (2017) Development of a biological tissue-like phantom for microwave imaging systems. Int J Sci Eng Appl Sci 3(4):62–69Google Scholar
  93. Watanabe S, Taki M, Nojima T, Fujiwara O (1996) Characteristics of the SAR distributions in an head exposed to electromagnetic fields radiated by a hand-held portable radio. IEEE Trans Microw Theory Technol 44(10):1874–1883CrossRefGoogle Scholar
  94. Weil CM (1975) Absorption characteristics of multi-layered sphere models exposed to UHF/microwave radiation. IEEE Trans Biomed Eng 22(6):468–476CrossRefPubMedPubMedCentralGoogle Scholar
  95. Youngs IJ, Treen AS, Fixter G, Holden S (2002) Design of solid broadband human tissue simulant materials. IEEE Proc Sci Meas Technol 149(6):323–328CrossRefGoogle Scholar
  96. Yuan Y, Wyatt C, Maccarini P, Stauffer P, Craciunescu O, MacFall J, Dewhirst M, Das SK (2012) A heterogeneous human tissue mimicking phantom for RF heating and MRI thermal monitoring verification. Phys Med Biol 57(7):2021–2037CrossRefPubMedPubMedCentralGoogle Scholar
  97. Zastrow E, Davis SK, Lazebnik M, Kelcz F, Van Veen BD, Hagness SC (2008) Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast. IEEE Trans Biomed Eng 55(12):2792–2800CrossRefPubMedPubMedCentralGoogle Scholar
  98. Zhang F, Liu X, Hackworth SA, Sclabassi RJ, Sun M (2009) In vitro and in vivo studies on wireless powering of medical sensors and implantable devices. In: Proceeding of IEEE/NIH Life Sci. Syst. Appl. Work, Apr. 2009, pp 84–87Google Scholar
  99. Zhou H (2009) A breast imaging model using microwaves and a time domain three dimensional reconstruction method. Prog Electromagn Res 93:57–70CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Applied SciencesNIT DelhiNew DelhiIndia
  2. 2.Department of Electronics and Communication EngineeringNIT DelhiNew DelhiIndia

Personalised recommendations