Biomedical Signal Analysis and Its Usage in Healthcare

  • Abdulhamit SubasiEmail author


Biomedical signals are collected from a body that can be at the organ level, cell level, or molecular level. There are different biomedical signals including the electroencephalogram (EEG), which is the electrical activity from the brain; the electrocardiogram (ECG), which is the electrical activity from the heart; the electromyogram (EMG), which is the electrical activity from the muscle sound signals; the electroneurogram; the electroretinogram from the eye; and so on (Muthuswamy, Biomedical signal analysis. In: Myer Kutz (ed) Standard handbook of biomedical engineering and design, vol 14. McGraw-Hill Education, New York, pp 1–18. 2004). Biomedical signals are primarily used to diagnose or detect specific pathological or physiological conditions. Additionally, these signals are employed to analyze biological systems in the healthcare. The aims of signal processing are signal denoising, precise recognition of signal model through analysis, feature extraction and dimension reduction for decisive function or dysfunction, and prediction of future functional or pathological events by employing machine learning techniques. The objective of this chapter is to present how biomedical signals are used in the healthcare and what are the steps of biomedical signal analysis.


Electrocardiograms (ECG) Electroencephalograms (EEG) Electromyograms (EMG) 


  1. Aarabi A, He B (2012) A rule-based seizure prediction method for focal neocortical epilepsy. Clin Neurophysiol 123(6):1111–1122PubMedPubMedCentralCrossRefGoogle Scholar
  2. Acharya R, Kumar A, Bhat P, Lim C, Kannathal N, Krishnan S (2004) Classification of cardiac abnormalities using heart rate signals. Med Biol Eng Comput 42(3):288–293PubMedCrossRefGoogle Scholar
  3. Acır N (2006) A support vector machine classifier algorithm based on a perturbation method and its application to ECG beat recognition systems. Expert Syst Appl 31(1):150–158CrossRefGoogle Scholar
  4. Adeli H, Ghosh-Dastidar S, Dadmehr N (2007) A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans Biomed Eng 54(2):205–211PubMedCrossRefGoogle Scholar
  5. Afkhami RG, Azarnia G, Tinati MA (2016) Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals. Pattern Recogn Lett 70:45–51CrossRefGoogle Scholar
  6. Ai D, Yang J, Wang Z, Fan J, Ai C, Wang Y (2015) Fast multi-scale feature fusion for ECG heartbeat classification. EURASIP J Adv Signal Process 2015(1):46CrossRefGoogle Scholar
  7. Al-Fahoum A, Howitt I (1999) Combined wavelet transformation and radial basis neural networks for classifying life-threatening cardiac arrhythmias. Med Biol Eng Comput 37(5):566–573PubMedCrossRefGoogle Scholar
  8. Alickovic E, Subasi A (2015) Effect of multiscale PCA de-noising in ECG beat classification for diagnosis of cardiovascular diseases. Circuits, Syst, Signal Process 34(2):513–533CrossRefGoogle Scholar
  9. Alickovic E, Subasi A (2016) Medical decision support system for diagnosis of heart arrhythmia using DWT and random forests classifier. J Med Syst 40(4):108PubMedCrossRefGoogle Scholar
  10. Alickovic E, Kevric J, Subasi A (2018) Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction. Biomed Signal Process Control 39:94–102CrossRefGoogle Scholar
  11. Alpaydin E (2014) Introduction to machine learning. MIT Press, Cambridge, MAGoogle Scholar
  12. Arif M, Akram MU (2010) Pruned fuzzy K-nearest neighbor classifier for beat classification. J Biomed Sci Eng 3(04):380CrossRefGoogle Scholar
  13. Arif M, Akram MU, Afsar FA (2009) Arrhythmia beat classification using pruned fuzzy k-nearest neighbor classifier. In: Presented at the soft computing and pattern recognition, 2009. SOCPAR’09, International Conference of IEEE, pp 37–42Google Scholar
  14. Artameeyanant P, Sultornsanee S, Chamnongthai K (2016) An EMG-based feature extraction method using a normalized weight vertical visibility algorithm for myopathy and neuropathy detection. Springerplus 5(1):2101PubMedPubMedCentralCrossRefGoogle Scholar
  15. Asl BM, Setarehdan SK, Mohebbi M (2008) Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artif Intell Med 44(1):51–64PubMedCrossRefGoogle Scholar
  16. Bakshi BR (1998) Multiscale PCA with application to multivariate statistical process monitoring. AICHE J 44(7):1596–1610CrossRefGoogle Scholar
  17. Bassingthwaighte JB, Liebovitch LS, West BJ (2013) Fractal physiology. Springer, New YorkGoogle Scholar
  18. Begg R, Lai DT, Palaniswami M (2008) Computational intelligence in biomedical engineering. CRC Press, Boca RatonGoogle Scholar
  19. Berbari EJ (2000) Principles of electrocardiography. The biomedical engineering handbook, vol 1. CRC Press, Boca Raton, pp 13–11Google Scholar
  20. Besrour R, Lachiri Z, Ellouze N (2008) ECG beat classifier using support vector machine. In: Presented at the information and communication technologies: from theory to applications, 2008. ICTTA 2008, 3rd International Conference on, IEEE, pp 1–5Google Scholar
  21. Bigan C (1998) A system for neural networks detection and automatic identification of EEG epileptic events. IEE Colloquium on Intelligent Methods in Healthcare and Medical Applications (Digest No. 1998/514), York/UK, pp 13/1–13/4.
  22. Bozkurt MR, Subasi A, Koklukaya E, Yilmaz M (2016) Comparison of AR parametric methods with subspace-based methods for EMG signal classification using stand-alone and merged neural network models. Turk J Electr Eng Comput Sci 24(3):1547–1559CrossRefGoogle Scholar
  23. Bronzino JD (1999) Biomedical engineering handbook, vol 2. CRC Press, Boca RatonGoogle Scholar
  24. Bronzino JD (2000) Principles of electroencephalography. The biomedical engineering handbook, 2nd edn. CRC Press LLC, Boca Raton, p 1Google Scholar
  25. Cai L, Wang Z, Zhang H (1999) An EMG classification method based on wavelet transform [and ANN]. In: Presented at the [Engineering in medicine and biology, 1999. 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society] BMES/EMBS Conference, 1999, vol 1. Proceedings of the First Joint, IEEE, pp 565-volGoogle Scholar
  26. Christodoulou CI, Pattichis CS (1999) Unsupervised pattern recognition for the classification of EMG signals. IEEE Trans Biomed Eng 46(2):169–178PubMedCrossRefGoogle Scholar
  27. Christov I, Jekova I, Bortolan G (2005) Premature ventricular contraction classification by the kth nearest-neighbours rule. Physiol Meas 26(1):123PubMedCrossRefGoogle Scholar
  28. Cichosz P (2014) Data mining algorithms: explained using R. John Wiley & Sons, MaldenGoogle Scholar
  29. Clayton RH, Murray A, Campbell RW (1993) Comparison of four techniques for recognition of ventricular fibrillation from the surface ECG. Med Biol Eng Comput 31(2):111–117PubMedCrossRefGoogle Scholar
  30. Cruz CIM, Marasigan JP, Perez APG, Pillejera JEV, Veron NP, dela Cruz AR (2016) A comparative study between DWT-ANFIS and DWT-SVM in ECG classification. In: Region 10 Conference (TENCON), 2016 IEEE, IEEE, pp 2052–2055Google Scholar
  31. de Chazal P, Reilly RB (2003) Automatic classification of ECG beats using waveform shape and heart beat interval features. In: Presented at the acoustics, speech, and signal processing, 2003. Proceedings. (ICASSP’03), vol 2. 2003 IEEE International Conference on, IEEE, pp II–269Google Scholar
  32. De Chazal P, O’Dwyer M, Reilly RB (2004) Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng 51(7):1196–1206PubMedCrossRefGoogle Scholar
  33. De Michele G, Sello S, Carboncini MC, Rossi B, Strambi S-K (2003) Cross-correlation time-frequency analysis for multiple EMG signals in Parkinson’s disease: a wavelet approach. Med Eng Phys 25(5):361–369PubMedCrossRefGoogle Scholar
  34. Dobrowolski AP, Wierzbowski M, Tomczykiewicz K (2012) Multiresolution MUAPs decomposition and SVM-based analysis in the classification of neuromuscular disorders. Comput Methods Prog Biomed 107(3):393–403CrossRefGoogle Scholar
  35. Esgiar A, Chakravorty P (2004) Electrocardiogram signal classification based on fractal features. In: Presented at the computers in cardiology, 2004, IEEE, pp 661–664Google Scholar
  36. Felzer T, Freisieben B (2003) Analyzing EEG signals using the probability estimating guarded neural classifier. IEEE Trans Neural Sys Rehab Eng 11(4):361–371CrossRefGoogle Scholar
  37. Gokgoz E, Subasi A (2014) Effect of multiscale PCA de-noising on EMG signal classification for diagnosis of neuromuscular disorders. J Med Syst 38(4):31PubMedCrossRefGoogle Scholar
  38. Gokgoz E, Subasi A (2015) Comparison of decision tree algorithms for EMG signal classification using DWT. Biomed Signal Process Control 18:138–144CrossRefGoogle Scholar
  39. Graimann B, Allison B, Pfurtscheller G (2009) Brain–computer interfaces: a gentle introduction. In: Brain-computer interfaces. Springer, Heidelberg, pp 1–27Google Scholar
  40. Guo X, Yang P, Chen L, Wang X, Li L (2006) Study of the control mechanism of robot-prosthesis based-on the EMG processed. Presented at the Intelligent Control and Automation, 2006. WCICA 2006, vol 2. The Sixth World Congress on, IEEE, pp 9490–9493Google Scholar
  41. Hall M, Witten I, Frank E (2011) Data mining: practical machine learning tools and techniques. Kaufmann, BurlingtonGoogle Scholar
  42. Hassoun MH, Wang C, Spitzer A (1994a) NNERVE: neural network extraction of repetitive vectors for electromyography. I. Algorithm. IEEE Trans Biomed Eng 41(11):1039–1052PubMedCrossRefGoogle Scholar
  43. Hassoun M, Wang C, Spitzer A (1994b) NNERVE: neural network extraction of repetitive vectors for electromyography. II. Performance analysis. IEEE Trans Biomed Eng 41(11):1053–1061PubMedCrossRefGoogle Scholar
  44. Hazarika A, Dutta L, Boro M, Barthakur M, Bhuyan M (2018) An automatic feature extraction and fusion model: application to electromyogram (EMG) signal classification. Int J Multimedia Inf Retr:1–14.
  45. Hu YH, Palreddy S, Tompkins WJ (1997) A patient-adaptable ECG beat classifier using a mixture of experts approach. IEEE Trans Biomed Eng 44(9):891–900PubMedCrossRefGoogle Scholar
  46. Ivanov PC, Amaral LAN, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR, Stanley HE (1999) Multifractality in human heartbeat dynamics. Nature 399(6735):461PubMedCrossRefGoogle Scholar
  47. Jiang M, Wang R, Wang J, Jin D (2006) A method of recognizing finger motion using wavelet transform of surface EMG signal. In: Presented at the Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, IEEE, pp 2672–2674Google Scholar
  48. Jones SA (2008) ECG Success Exercises in ECG Interpretation. F. A. Davis Company, PhiladelphiaGoogle Scholar
  49. KalaiSelvi A, Sasireka M, Senthilkumar A, Maheswari S (n.d.) Complex wavelet transform based cardiac arrhythmia classification. Int J Emerg Technol Comput Sci Electron 20(2):34–37Google Scholar
  50. Kamali T, Boostani R, Parsaei H (2013) A hybrid classifier for characterizing motor unit action potentials in diagnosing neuromuscular disorders. J Biomed Phys Eng 3(4):145PubMedPubMedCentralGoogle Scholar
  51. Kamali T, Boostani R, Parsaei H (2014) A multi-classifier approach to MUAP classification for diagnosis of neuromuscular disorders. IEEE Trans Neural Sys Rehab Eng 22(1):191–200CrossRefGoogle Scholar
  52. Karimifard, S., Ahmadian, A., Khoshnevisan, M., & Nambakhsh, M. (2006). Morphological heart arrhythmia detection using hermitian basis functions and kNN classifier. In: Presented at the engineering in medicine and biology society, 2006. EMBS’06. 28th Annual International Conference of the IEEE, IEEE, pp 1367–1370Google Scholar
  53. Katsis CD, Goletsis Y, Likas A, Fotiadis DI, Sarmas I (2006) A novel method for automated EMG decomposition and MUAP classification. Artif Intell Med 37(1):55–64PubMedCrossRefGoogle Scholar
  54. Kaur G, Arora A, Jain V (2010) EMG diagnosis via AR modeling and binary support vector machine classification. Int J Eng Sci Technol 2(6):1767–1772Google Scholar
  55. Kerem DH, Geva AB (2017) Brain state identification and forecasting of acute pathology using unsupervised fuzzy clustering of EEG temporal patterns. In: Fuzzy and neuro-fuzzy systems in medicine. CRC Press, Boca Raton, pp 19–68Google Scholar
  56. Kevric J, Subasi A (2017) Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed Signal Process Control 31:398–406CrossRefGoogle Scholar
  57. Khan Y, Gotman J (2003) Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clin Neurophysiol 114(5):898–908PubMedCrossRefGoogle Scholar
  58. Khan M, Singh J, Tiwari M (2016) A multi-classifier approach of EMG signal classification for diagnosis of neuromuscular disorders. Int J Comput Appl 133(4):13–18Google Scholar
  59. Kiranyaz S, Ince T, Hamila R, Gabbouj M (2015) Convolutional neural networks for patient-specific ecg classification. In: Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE. IEEE, pp 2608–2611Google Scholar
  60. Kutlu Y, Kuntalp D (2011) A multi-stage automatic arrhythmia recognition and classification system. Comput Biol Med 41(1):37–45PubMedCrossRefPubMedCentralGoogle Scholar
  61. Lai K, Chan K (1998) Real-time classification of electrocardiogram based on fractal and correlation analyses. In: Presented at the Engineering in Medicine and Biology Society, 1998. Proceedings of the 20th Annual International Conference of the IEEE, IEEE, pp 119–122Google Scholar
  62. Li T, Zhou M (2016) ECG classification using wavelet packet entropy and random forests. Entropy 18(8):285CrossRefGoogle Scholar
  63. Li H, Feng X, Cao L, Li E, Liang H, Chen X (2016) A new ECG signal classification based on WPD and ApEn feature extraction. Circuits, Syst, Signal Process 35(1):339–352CrossRefGoogle Scholar
  64. Liu Y, Zhou W, Yuan Q, Chen S (2012) Automatic seizure detection using wavelet transform and SVM in long-term intracranial EEG. IEEE Trans Neural Sys Rehab Eng 20(6):749–755CrossRefGoogle Scholar
  65. Loudon G, Jones N, Sehmi A (1992) New signal processing techniques for the decomposition of EMG signals. Med Biol Eng Comput 30(6):591–599PubMedCrossRefPubMedCentralGoogle Scholar
  66. Luz EJ, Schwartz WR, Cámara-Chávez G, Menotti D (2016) ECG-based heartbeat classification for arrhythmia detection: a survey. Comput Methods Prog Biomed 127:144–164CrossRefGoogle Scholar
  67. Mainardi LT, Bianchi AM, Cerutti S (2006) Digital biomedical signal acquisition and processing. In: Medical devices and systems. CRC Press, Boca Raton, pp 49–72Google Scholar
  68. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693CrossRefGoogle Scholar
  69. Masetic Z, Subasi A (2016) Congestive heart failure detection using random forest classifier. Comput Methods Prog Biomed 130:54–64CrossRefGoogle Scholar
  70. Melgani F, Bazi Y (2008) Classification of electrocardiogram signals with support vector machines and particle swarm optimization. IEEE Trans Inf Technol Biomed 12(5):667–677PubMedCrossRefGoogle Scholar
  71. Micheli-Tzanakou E (2000) Neural networks in biomedical signal processing. In: Bronzino JD (ed) The biomedical engineering handbook, 2nd edn. CRC Press LLC, Boca Raton, pp 49–72Google Scholar
  72. Minami K, Nakajima H, Toyoshima T (1999) Real-time discrimination of ventricular tachyarrhythmia with Fourier-transform neural network. IEEE Trans Biomed Eng 46(2):179–185PubMedCrossRefGoogle Scholar
  73. Mishra AK, Raghav S (2010) Local fractal dimension based ECG arrhythmia classification. Biomed Signal Process Control 5(2):114–123CrossRefGoogle Scholar
  74. Mishra VK, Bajaj V, Kumar A, Sharma D, Singh G (2017) An efficient method for analysis of EMG signals using improved empirical mode decomposition. AEU-Int J Electron Commun 72:200–209CrossRefGoogle Scholar
  75. Moraes J, Seixas M, Vilani F, Costa E (2002) A real time QRS complex classification method using Mahalanobis distance. In: Presented at the Computers in Cardiology, 2002, IEEE, pp 201–204Google Scholar
  76. Muller P, Contento N, Rix H (1992) Fractal dimension on ECG. In: Presented at the Engineering in Medicine and Biology Society, 1992 14th Annual International Conference of the IEEE, IEEE, vol 3, pp 977–978Google Scholar
  77. Muthuswamy J (2004) Biomedical signal analysis. In: Kutz M (ed) Standard handbook of biomedical engineering and design, vol 14. McGraw-Hill Education, New York, pp 1–18Google Scholar
  78. Nadal J, de Bossan MC (1993) Classification of cardiac arrhythmias based on principal component analysis and feedforward neural networks. In: Presented at the computers in cardiology 1993, Proceedings, IEEE, pp 341–344Google Scholar
  79. Naik GR, Selvan SE, Nguyen HT (2016) Single-channel EMG classification with ensemble-empirical-mode-decomposition-based ICA for diagnosing neuromuscular disorders. IEEE Trans Neural Sys Rehab Eng 24(7):734–743CrossRefGoogle Scholar
  80. Niedermayer E (1999) Abnormal EEG patterns: Epileptic and paroxysmal. In: Niedermayer E, Silva FL (eds) Electroencephalography. Basic principles, clinical applications and related fields. Williams & Wilkins, Baltimore, pp 235–260Google Scholar
  81. Osowski S, Linh TH (2001) ECG beat recognition using fuzzy hybrid neural network. IEEE Trans Biomed Eng 48(11):1265–1271PubMedCrossRefGoogle Scholar
  82. Özbay Y, Ceylan R, Karlik B (2006) A fuzzy clustering neural network architecture for classification of ECG arrhythmias. Comput Biol Med 36(4):376–388PubMedCrossRefGoogle Scholar
  83. Pan J, Tompkins WJ (1985) A real-time QRS detection algorithm. IEEE Trans Biomed Eng 32(3):230–236PubMedCrossRefGoogle Scholar
  84. Pang CC, Upton AR, Shine G, Kamath MV (2003) A comparison of algorithms for detection of spikes in the electroencephalogram. IEEE Trans Biomed Eng 50(4):521–526PubMedCrossRefGoogle Scholar
  85. Parsaei H, Stashuk DW (2013) EMG signal decomposition using motor unit potential train validity. IEEE Trans Neural Sys Rehab Eng 21(2):265–274CrossRefGoogle Scholar
  86. Passanisi C (2004) Electrocardiography. Delmar Learning, New YorkGoogle Scholar
  87. Pattichis CS, Elia AG (1999) Autoregressive and cepstral analyses of motor unit action potentials. Med Eng Phys 21(6):405–419PubMedCrossRefGoogle Scholar
  88. Pattichis CS, Schizas CN, Middleton LT (1995) Neural network models in EMG diagnosis. IEEE Trans Biomed Eng 42(5):486–496CrossRefGoogle Scholar
  89. Phinyomark A, Quaine F, Charbonnier S, Serviere C, Tarpin-Bernard F, Laurillau Y (2013) EMG feature evaluation for improving myoelectric pattern recognition robustness. Expert Syst Appl 40(12):4832–4840CrossRefGoogle Scholar
  90. Prasad GK, Sahambi J (2003) Classification of ECG arrhythmias using multi-resolution analysis and neural networks. In: Presented at the TENCON 2003. Conference on Convergent Technologies for the Asia-Pacific Region, IEEE, vol 1, pp 227–231Google Scholar
  91. Preston DC, Shapiro BE (2012) Electromyography and neuromuscular disorders: clinical-electrophysiologic correlations. Elsevier Health Sciences, LondonGoogle Scholar
  92. Qin Z, Chen J, Liu Y, Lu J (2005) Evolving RBF neural networks for pattern classification. In: Presented at the International Conference on Computational and Information Science, Springer, pp 957–964Google Scholar
  93. Qurraie SS, Afkhami RG (2017) ECG arrhythmia classification using time frequency distribution techniques. Biomed Eng Lett 7(4):325–332CrossRefGoogle Scholar
  94. Raghav S, Mishra AK (2008) Fractal feature based ECG arrhythmia classification. In: Presented at the TENCON 2008-2008 IEEE Region 10 Conference, IEEE, pp 1–5Google Scholar
  95. Raghunathan S, Jaitli A, Irazoqui PP (2011) Multistage seizure detection techniques optimized for low-power hardware platforms. Epilepsy Behav 22:S61–S68PubMedCrossRefGoogle Scholar
  96. Rasheed S, Stashuk D, Kamel M (2008) A software package for interactive motor unit potential classification using fuzzy k-NN classifier. Comput Methods Prog Biomed 89(1):56–71CrossRefGoogle Scholar
  97. Richfield EK, Cohen BA, Albers JW (1981) Review of quantitative and automated needle electromyographic analyses. IEEE Trans Biomed Eng 7:506–514CrossRefGoogle Scholar
  98. Sanei S (2013) Adaptive processing of brain signals. John Wiley & Sons, ChichesterCrossRefGoogle Scholar
  99. Schizas CN, Pattichis CS (1997) Learning systems in biosignal analysis. Biosystems 41(2):105–125PubMedCrossRefGoogle Scholar
  100. Sengur A, Akbulut Y, Guo Y, Bajaj V (2017) Classification of amyotrophic lateral sclerosis disease based on convolutional neural network and reinforcement sample learning algorithm. Health Inf Sci Syst 5(1):9PubMedPubMedCentralCrossRefGoogle Scholar
  101. Siuly S, Li Y, Zhang Y (2016) EEG signal analysis and classification. Springer, ChamCrossRefGoogle Scholar
  102. Sokolova M, Japkowicz N, Szpakowicz S (2006) Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. In: Presented at the Australasian Joint Conference on Artificial Intelligence, Springer, pp 1015–1021Google Scholar
  103. Soleimani-B H, Lucas C, Araabi BN, Schwabe L (2012) Adaptive prediction of epileptic seizures from intracranial recordings. Biomed Signal Process Control 7(5):456–464CrossRefGoogle Scholar
  104. Son C-S, Kim Y-N, Kim H-S, Park H-S, Kim M-S (2012) Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches. J Biomed Inform 45(5):999–1008PubMedCrossRefPubMedCentralGoogle Scholar
  105. Sörnmo L, Laguna P (2005) Bioelectrical signal processing in cardiac and neurological applications, vol 8. Academic Press, San DiegoGoogle Scholar
  106. Subasi A (2007) EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 32(4):1084–1093CrossRefGoogle Scholar
  107. Subasi A (2012a) Classification of EMG signals using combined features and soft computing techniques. Appl Soft Comput 12(8):2188–2198CrossRefGoogle Scholar
  108. Subasi A (2012b) Medical decision support system for diagnosis of neuromuscular disorders using DWT and fuzzy support vector machines. Comput Biol Med 42(8):806–815PubMedCrossRefPubMedCentralGoogle Scholar
  109. Subasi A (2013) Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders. Comput Biol Med 43(5):576–586PubMedCrossRefPubMedCentralGoogle Scholar
  110. Subasi A (2015) A decision support system for diagnosis of neuromuscular disorders using DWT and evolutionary support vector machines. SIViP 9(2):399–408CrossRefGoogle Scholar
  111. Subasi A (2019) Practical guide for biomedical signal analysis using machine learning: a MATLAB based approach. Academic Press, Elsevier Inc, London, UK, ISBN 978-0-12-817444-9Google Scholar
  112. Subasi A, Gursoy MI (2010) EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst Appl 37(12):8659–8666CrossRefGoogle Scholar
  113. Subasi A, Yilmaz M, Ozcalik HR (2006) Classification of EMG signals using wavelet neural network. J Neurosci Methods 156(1):360–367PubMedCrossRefGoogle Scholar
  114. Subasi A, Kevric J, Canbaz MA (2017) Epileptic seizure detection using hybrid machine learning methods. Neural Comput & Applic:1–9Google Scholar
  115. Thakor NV, Zhu Y-S, Pan K-Y (1990) Ventricular tachycardia and fibrillation detection by a sequential hypothesis testing algorithm. IEEE Trans Biomed Eng 37(9):837–843PubMedCrossRefGoogle Scholar
  116. Thakor NV, Gramatikov B, Sherman D (2000) Wavelet (time-scale) analysis in biomedical signal processing. In: Bronzino JD (ed) The biomedical engineering handbook, vol 56, 2nd edn. CRC Press LLC, Boca Raton, pp 1–56Google Scholar
  117. Thaler M (2017) The only EKG book you’ll ever need. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  118. Thomas M, Das MK, Ari S (2015) Automatic ECG arrhythmia classification using dual tree complex wavelet based features. AEU-Int J Electron Commun 69(4):715–721CrossRefGoogle Scholar
  119. Usta N, Yildiz M (2017) Classification of ECG arrhythmia with machine learning techniques. In: Machine Learning and Applications (ICMLA), 2017 16th IEEE International Conference on. IEEE, pp 546–549Google Scholar
  120. Wang G, Huang H, Xie H, Wang Z, Hu X (2007) Multifractal analysis of ventricular fibrillation and ventricular tachycardia. Med Eng Phys 29(3):375–379PubMedCrossRefGoogle Scholar
  121. Williamson JR, Bliss DW, Browne DW, Narayanan JT (2012) Seizure prediction using EEG spatiotemporal correlation structure. Epilepsy Behav 25(2):230–238PubMedCrossRefGoogle Scholar
  122. Winterhalder M, Maiwald T, Voss H, Aschenbrenner-Scheibe R, Timmer J, Schulze-Bonhage A (2003) The seizure prediction characteristic: a general framework to assess and compare seizure prediction methods. Epilepsy Behav 4(3):318–325PubMedCrossRefGoogle Scholar
  123. Wołczowski A, Zdunek R (2017) Electromyography and mechanomyography signal recognition: Experimental analysis using multi-way array decomposition methods. Biocybernetics Biomed Eng 37(1):103–113. Scholar
  124. Yang T-F, Devine B, Macfarlane P (1994) Artificial neural networks for the diagnosis of atrial fibrillation. Med Biol Eng Comput 32(6):615–619PubMedCrossRefGoogle Scholar
  125. Yong, Z., Wenxue, H., & Yonghong, X. (2009). ECG beats feature extraction based on geometric algebra computational intelligence and software engineering. In: Presented at the International Conference on Computational Intelligence and Software Engineering, vol 2009, pp 1–3Google Scholar
  126. Yousefi J, Hamilton-Wright A (2014) Characterizing EMG data using machine-learning tools. Comput Biol Med 51:1–13PubMedCrossRefGoogle Scholar
  127. Yu S-N, Chou K-T (2007) A switchable scheme for ECG beat classification based on independent component analysis. Expert Syst Appl 33(4):824–829CrossRefGoogle Scholar
  128. Yu S-N, Chou K-T (2008) Integration of independent component analysis and neural networks for ECG beat classification. Expert Syst Appl 34(4):2841–2846CrossRefGoogle Scholar
  129. Yuan Q, Zhou W, Liu Y, Wang J (2012) Epileptic seizure detection with linear and nonlinear features. Epilepsy Behav 24(4):415–421PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Effat UniversityCollege of EngineeringJeddahSaudi Arabia

Personalised recommendations