Advertisement

Emerging Point-of-Care Diagnostic Methods for Disease Detection

  • Smriti Singh
  • Pranav Tripathi
  • Seema NaraEmail author
Chapter

Abstract

Diagnosis being an integrated part of healthcare industry majorly focuses on sensitivity, specificity and cost-effectiveness to ensure maximum projection of population. These parameters are interdependent and tend to change according to the disease to be diagnosed. Being an inseparable part of diagnostics, point-of-care diagnostics (POCD) holds a significant place and captures a giant market segment too. Despite tangible progresses in POC diagnostics, issues regarding consistency, data acquisition, correlation, data annotation and data relocation require novel strategies for addressing. In this context, this chapter discusses the existing as well as the emerging technologies where an optimal sequential advancement can be studied in reference to POC diagnostics. The chapter discusses the change in recent approaches due to which admirable reports have illuminated novel technologies.

Keywords

POCD Lateral flow immunoassay Microfluidics Surface plasmon resonance Point-of-care testing 

Notes

Acknowledgements

We greatly acknowledge the Department of Biotechnology, MNNIT, Allahabad, for providing all necessary support towards writing this chapter.

References

  1. Akraa S, Anh PTT, Shen H et al (2018) A smartphone-based point-of-care quantitative urinalysis device for chronic kidney disease patients. J Netw Comput Appl 115:59–69CrossRefGoogle Scholar
  2. Asma S, Sébastien C (2018) Positive dynamics of microfluidic-based point-of-need. In: Point-of-need testing: application of microfluidic technologies report, Yole Dévelopement. http://www.yole.fr/iso_upload/News/2018/PR_POINT_of_NEED_TESTING_MarketGrowth_YOLE_February2018.pdf. Accessed on 29 Dec 2018Google Scholar
  3. Barnes L, Heithoff DM, Mahan SP et al (2018) Smartphone-based pathogen diagnosis in urinary sepsis patients. EBio Med 36:73–82Google Scholar
  4. Chen Y, Chen Q, Han M et al (2016) Near-infrared fluorescence-based multiplex lateral flow immunoassay for the simultaneous detection of four antibiotic residue families in milk. Biosens Bioelectron 79:430–434CrossRefGoogle Scholar
  5. Chiu NF, Chen CC, Yang CD et al (2018) Enhanced plasmonic biosensors of hybrid gold nanoparticle-graphene oxide-based label-free immunoassay. Nanoscale Res Lett 13:152CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cooksey GA, Elliott JT, Plant AL (2011) Reproducibility of a real-time microfluidic cell toxicity assay. Anal Chem 83(10):3890–3896CrossRefPubMedGoogle Scholar
  7. Darwish A, Hassanien AE (2011) Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors (Basel) 11(6):5561–5595CrossRefGoogle Scholar
  8. de la Escosura-Muñiz A, Baptista-Pires L, Serrano L, Altet L, Francino O, Sánchez A, Merkoçi A (2016) Electrocatalytic detection: magnetic bead/gold nanoparticle double-Labeled primers for electrochemical detection of isothermal amplified DNA (small 2/2016). Small 12(2):204–204CrossRefGoogle Scholar
  9. Dengue Check Dipstick assay (2018). http://www.tulipgroup.com/Zephyr_New/qrg/Dengucheck%20NS1%20QRG.pdf. Accessed on 29/12/2018
  10. Eisenstein M (2012) Miniature wireless sensors presage smart phone medicine. Nat Biotechnol 30(11):1013–1014CrossRefPubMedGoogle Scholar
  11. Fan XD, White IM, Shopova SI et al (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620:8CrossRefPubMedGoogle Scholar
  12. Fan Y, Liu J, Wang Y et al (2017) A wireless point-of-care testing system for the detection of neuron-specific enolase with microfluidic paper-based analytical devices. Biosens Bioelectron 95:60–66CrossRefPubMedGoogle Scholar
  13. Fu X, Cheng Z, Yu J et al (2016) A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA. Biosens Bioelectron 78:530–537CrossRefPubMedGoogle Scholar
  14. Gold J (2012) FDA regulators face daunting task as health apps multiply. In: USA Today [Online]. Available: http://usatoday30.usatoday.com/news/health/story/2012-06-22/health-apps-regulation/55766260/1
  15. Gonzalez JM, Foley MW, Bieber NM et al (2011) Development of an ultrasensitive immunochromatography test to detect nicotine metabolites in oral fluids. Anal Bioanal Chem 400:3655–3664CrossRefPubMedGoogle Scholar
  16. Gravi Chek Dipstick for Pregancy Test (2018). http://www.tulipgroup.com/Qualpro_New/html/pack_inserts/Gravichek%20dipstick.pdf. Accessed on 29/12/2018
  17. Harpaz D, Eltzov E, Seet R, Marks RS, Tok AI (2017) Point-of-care-testing in acute stroke management: an unmet need ripe for technological harvest. Biosensors 7:30CrossRefPubMedCentralGoogle Scholar
  18. HIV-1/2 STAT PAK Dipstick assay (2018). http://chembio.com/products/human-diagnostics/hiv-12-stat-pak-dipstick-assay/. Accessed on 29/12/2018
  19. Hou Y, Wang K, Xiao K et al (2017) Smartphone-based dual-modality imaging system for quantitative detection of color or fluorescent lateral flow immunochromatographic strips. Nanoscale Res Lett 12:291CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hu J, Wang L, Li F et al (2013) Oligonucleotide linked gold nanoparticle aggregates for enhanced sensitivity in lateral flow assays. Lab Chip 13(22):4352–4357CrossRefPubMedGoogle Scholar
  21. Jonathan E, Leahy M (2010) Investigating a smartphone imaging unit for photoplethysmography. Physiol Meas 31(11):N79–N83CrossRefGoogle Scholar
  22. Keto-diastix reagent strips for urine analysis (2018). https://www.allegromedical.com/diabetic-supplies-c520/keto-diastix-reagent-strips-p172163.html. Accessed on 29/12/2018
  23. Kim TS, Yoon G, Lee J et al (2004) Method of extracting region of interest from tongue image and health monitoring method and apparatus using the tongue image. Europe EP1450287A2Google Scholar
  24. Kim U, Ghanbari S, Ravikumar A et al (2013) Rapid, affordable, point-of-care water monitoring via a microfluidic DNA sensor and a mobile interface for global health. IEEE Trans Eng Heal Med 2013:1Google Scholar
  25. Kozel TR, Burnham-Marusich AR (2017) Point-of-care testing for infectious diseases: past, present, and future. J Clin Microbiol 55:2313–2320CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kuila T, Bose S, Khanra P et al (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26(12):4637–4648CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lane ND, Miluzzo E, Lu H et al (2010) A survey of mobile phone sensing. IEEE Commun Mag 48:140–150CrossRefGoogle Scholar
  28. Lateral Flow Assay Market by Application (Clinical Testing (Pregnancy, Infectious Disease (Mosquito, Influenza, STI, Hepatitis, TB), Cardiac Marker, Lipid Test) Veterinary, Food Safety) Product (Reader, Kits) Technique, End User – Global Forecast to 2023 (2018). https://www.marketsandmarkets.com/Market-Reports/lateral-flow-assay-market-167205133.html.Online. Accessed on 27/12/2018
  29. Lee WG, Kim YG, Chung BG et al (2011) Nano/ microfluidics for diagnosis of infectious diseases in developing countries. Adv Durg Deliv Rev 62:449–457CrossRefGoogle Scholar
  30. Lee S, Oncescu V, Mancuso M et al (2014) A smartphone platform for the quantification of vitamin D levels. Lab Chip 14(8):1437–1442CrossRefPubMedPubMedCentralGoogle Scholar
  31. Leishmaniasis Dipstick assay (2018). http://www.tulipgroup.com/Zephyr_New/qrg/leishcheck.pdf. Accessed on 29/12/2018
  32. Leptochek Dipstick assay (2018). http://www.tulipgroup.com/Zephyr_New/html/pack_inserts/Leptochek.pdf. Accessed on 29/12/2018
  33. Li WB, Zhang L, Zhou JH et al (2015) Well-designed metal nanostructured arrays for label-free plasmonic biosensing. J Mater Chem C3:6479Google Scholar
  34. Lillehoj PB, Huang M, Truong N et al (2013) Rapid electrochemical detection on a mobile phone. Lab Chip 13:2950–2955CrossRefPubMedPubMedCentralGoogle Scholar
  35. Liu Y, Wu A, Hu J et al (2015) Detection of 3-phenoxybenzoic acid in river water with a colloidal gold-based lateral flow immunoassay. Anal Biochem 483:7–11CrossRefPubMedPubMedCentralGoogle Scholar
  36. Liu Y, Tu D, Zheng W et al (2018) A strategy for accurate detection of glucose in human serum and whole blood based on an upconversion nanoparticles-polydopamine nanosystem. Nano Res 11(6):3164–3174CrossRefGoogle Scholar
  37. Loonen AJ, Schuurman R, Van Den Brule AJ (2012) Highlights from the 7th European meeting on molecular diagnostics. Expert Rev Mol Diagn 12(1):17–19CrossRefGoogle Scholar
  38. Lu JD, Van Stappen T, Spasic D et al (2016) Fiber optic-SPR platform for fast and sensitiveinfliximab detection in serum of inflammatory bowel disease patients. Biosens Bioelectron 79:173–179CrossRefPubMedGoogle Scholar
  39. Mertz L (2012) Ultrasound? Fetal monitoring? Spectrometer? There’s an app for that! IEEE Pulse 3(2):16–21CrossRefPubMedGoogle Scholar
  40. Mevold AHH, Hsu WW, Hardiansyah A et al (2015) Fabrication of gold nanoparticles/graphene-PDDA nanohybrids for bio-detection by SERS nanotechnology. Nanoscale Res Lett 10:397CrossRefPubMedPubMedCentralGoogle Scholar
  41. Monteiro JP, de JH O, Radovanovic E et al (2016) Microfluidic plasmonic biosensor for breast cancer antigen detection. Plasmonics 11:45–51CrossRefGoogle Scholar
  42. O’Farrell B (2013) Lateral flow immunoassay systems: evolution from the current state of the art to the next generation of highly sensitive, quantitative rapid assays. In: Wild D (ed) The immunoassay handbook: theory and applications of ligand binding, ELISA and related techniques, 4th edn. Newnes, Boston, pp 89–107CrossRefGoogle Scholar
  43. Ohly N, Teece S (2003) Accuracy of negative dipstick urine analysis in ruling out urinarytract infection in adults. Emerg Med J20:362–363Google Scholar
  44. Oncescu V, O’Dell D, Erickson D (2013) Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva. Lab Chip 13:3232–3238CrossRefPubMedGoogle Scholar
  45. Oneson R, Groschel DH (1985) Leukocyte esterase activity and nitrite test as a rapid screen for significant bacteriuria. Am J Clin Pathol 83:84–87CrossRefPubMedGoogle Scholar
  46. Ozcan A (2019) Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab Chip 20:14Google Scholar
  47. Pal A, Sinha A, Choudhury AD et al (2013) A robust heart rate detection using smart-phone video categories and subject descriptors. Proc MobileHealth 13:43–48CrossRefGoogle Scholar
  48. Pingarron JM, Yanez-Sedeno P, Gonzalez-Cortes A (2008) Gold nanoparticle-based electrochemical biosensors. Electrochim Acta 53:5848–5866CrossRefGoogle Scholar
  49. Point-of-Care/Rapid Diagnostics Market by Testing (Glucose, Lipids, HbA1c, HCV, HIV, Influenza, Urinalysis, Hematology, Cancer, Pregnancy, PT/INR), Platform (Lateral Flow, Immunoassay), Mode (Prescription, OTC), End-User – Global Forecast to 2022 (2016). Available online: https://www.marketsandmarkets.com/Market-Reports/point-of-care-diagnostic-market-106829185.html. Accessed on 27 Dec 2018
  50. Potluri V, Kathiresan PS, Kandula H et al (2019) An inexpensive smartphone-based device for point-of-care ovulation testing. Lab Chip 19:59CrossRefGoogle Scholar
  51. Price CP, Thorpe G (1999) Disposable analytical devices in point-of care testing. In: Point-of-Care Testing (ed) CP Price and JM Hicks. AACC Press, Washington, pp 17–40Google Scholar
  52. Price C, St John A, Kricka L (2010) Point-of-care testing. Needs, opportunities and innovation, 3rd edn. AACC Press, WashingtonGoogle Scholar
  53. Qavi AJ, Washburn AL, Byeon JY et al (2009) Label-free technologies for quantitative multiparameter biological analysis. Anal Bioanal Chem 394:121CrossRefPubMedPubMedCentralGoogle Scholar
  54. Quesada-González D, Merkoçi A (2018) Nanomaterial-based devices for point-of-care diagnostic applications. Chem Soc Rev 47(13):4697–4709CrossRefPubMedPubMedCentralGoogle Scholar
  55. Ra M, Muhammad MS, Lim C et al (2018) Smartphone-based point-of-care urinalysis under variable illumination. IEEE J Transl Eng Health Med 6:2168–2372CrossRefGoogle Scholar
  56. Saeed AA, Sánchez JLA, O’Sullivan CK et al (2017) DNA biosensors based on gold nanoparticles-modified graphene oxide for the detection of breast cancer biomarkers for early diagnosis. Bioelectrochemistry 118:91–99CrossRefPubMedGoogle Scholar
  57. Sareenoi Y, Koehler K, Shapiro J et al (2012) Microfluidic electrochemical sensor for on-line monitoring of aerosol oxidative activity. J Am Chem Soc 134(25):10562–10568CrossRefGoogle Scholar
  58. Scully CG, Lee J, Meyer J (2012) Physiological parameter monitoring from optical recordings with a mobile phone. IEEE Trans Biomed Eng 59(2):303–306CrossRefGoogle Scholar
  59. Seefeld TH, Zhou WJ, Corn RM (2011) Rapid microarray detection of DNA and proteins in microliter volumes with surface Plasmon resonance imaging measurements. Langmuir 27(10):6534–6540CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sharma S, Zapatero-Rodríguez J, Estrela P et al (2015) Point-of-care diagnostics in low resource settings: present status and future role of microfluidics. Biosensors 5(3):577–601CrossRefPubMedPubMedCentralGoogle Scholar
  61. Singh J, Sharma S, Nara S (2015) Evaluation of gold nanoparticle based lateral flow assays for diagnosis of enterobacteriaceae members in food and water. Food Chem 170:470–483CrossRefPubMedGoogle Scholar
  62. Song Q, Gao Y, Zhu Q et al (2015) A nanoliter self-priming compartmentalizaton chip for point of-care digital PCR analysis. Biomed Microdevices 17:64CrossRefGoogle Scholar
  63. Sun J, Gao Y, Isaacs RJ et al (2012) Simultaneous on-chip DC dielectrophoretic cell separation and quantitative separation performance characterization. Anal Chem 84(4):2017–2024CrossRefGoogle Scholar
  64. Tavares AJ, Noor MO, Vannoy CH et al (2012) On-chip transduction of nucleic acid hybridization using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer. Anal Chem 84(1):312–319CrossRefGoogle Scholar
  65. Tripathi P, Upadhyay N, Nara S (2017) Recent advancements in lateral flow immunoassays: a journey for toxin detection in food. Crit Rev Food Sci Nutr 58(10):1715–1734CrossRefGoogle Scholar
  66. Vashist SK, Luppa PB, Yeo LY et al (2015) Emerging technologies for next-generation point-of-care testing. Trends Biotechnol 33:692–705CrossRefGoogle Scholar
  67. Wadhawan T, Situ N, Rui H et al (2012) Implementation of the 7-point checklist for melanoma detection on smart handheld devices. Proc IEEE Eng Med Biol Soc 2011:3180–3183Google Scholar
  68. Wang S, Tasoglu S, Chen PZ et al (2014) Micro-a-fluidics ELISA for rapid CD4 cell count at the point-of-care. Sci Rep 4:3796CrossRefPubMedPubMedCentralGoogle Scholar
  69. Wojtczak J, Bonadonna P (2013) Pocket mobile smartphone system for the point-of-care submandibular ultrasonography. Am J Emerg Med 31(3):573–577CrossRefPubMedPubMedCentralGoogle Scholar
  70. Xie QM, Liu J (2010) Mobile phone based biomedical imaging technology: a newly emerging area. Recent Pat Biomed Eng 3(1):41–53CrossRefGoogle Scholar
  71. Yang Q, Cai R, Xiao W et al (2016) Plasmonic ELISA for sensitive detection of disease biomarkers with a smart phone based reader. Nanoscale Res Lett 13:397CrossRefGoogle Scholar
  72. Yu Y, Baker CA, Zhang X et al (2012) Quantitative polymerase chain reaction using infrared heating on a microfluidic chip. Anal Chem 84(6):2825–2829CrossRefPubMedPubMedCentralGoogle Scholar
  73. Zhang H, Jenkins G, Zou Y et al (2012) Massively parallel single-molecule and single-cell emulsion reverse transcription polymerase chain reaction using agarose droplet microfluidics. Anal Chem 84(8):3599–3606CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zhao YT, Tong LP, Li Y et al (2016) Lactose-functionalized gold nanorods for sensitive and rapid serological diagnosis of cancer. ACS Appl Mater Interfaces 8(9):5813–5820CrossRefPubMedPubMedCentralGoogle Scholar
  75. Zhu H, Sencan I, Wong J et al (2013) Cost-effective and rapid blood analysis on a cell-phone. Lab Chip 13(7):1282–1288CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyMotilal Nehru National Institute of TechnologyAllahabad/PrayagrajIndia

Personalised recommendations