Surface Modifications in Ti-Based Orthopaedic Implants

  • Sudip K. SinhaEmail author


Research in the domain of various metallic and non-metallic biomaterials has been established to be of immense importance in the recent years since they can directly contribute to improve the quality and long life of human beings. Among a wide range of metallic biomaterials, Ti and its alloys have been extensively used to manufacture implantable components in numerous dental and orthopaedic applications. Their demand in this specific area of application arises owing to its superior biocompatibility resulting from negligible ion release when they come in close contact with body fluids, exceptional corrosion resistance, a specific combination of mechanical strength and toughness, lighter weight and many others.

In further developments, deposition of TiO2 nanotubes (TNTs) by means of conventional electro-anodization technique on Ti-based metallic substrate has proved to be an excellent alternative for superior implant applications. As a modified surface, nanotubular surfaces promote cellular interaction compared with conventional flat or polished surfaces.

TiO2-based modified nanotubular surfaces with distinct topography in the nanometric scale offer direct cellular interaction and show promises for tissue regeneration and bone substitute effects.

The present chapter offers a detailed discussion on the synthesis and surface preparation, growth mechanism, morphology and end application of TiO2 nanotube arrays for orthopaedics.


Biomaterials TiO2 nanotubes Electro-anodization Tissue regeneration Corrosion 



The author expresses his gratitude to Dr. A. Bit for fruitful discussions for writing up this chapter.

Conflict of Interest

The authors confirm that this article content has no conflict of interest.


  1. Ardjomandi N, Klein C, Kohler K, Maurer A, Kalbacher H, Niederlander J, Reinert S, Alexander D (2012) Indirect coating of RGD peptides using a poly-L-lysine spacer enhances jaw perios-teal cell adhesion, proliferation, and differentiation into osteogenic tissue. J Biomed Mater Res Part A 100(8):2034–2044CrossRefGoogle Scholar
  2. ASTM Standard B600 (1997) Standard guide for descaling and cleaning titanium and titanium alloy surfaces, Annual book of ASTM standards, Vol. 2.04. American Society for Testing and Materials, Philadelphia, pp 6–8Google Scholar
  3. Balakrishnan A, Lee BC, Kim TN, Panigrahi BB (2007) Hydroxyapatite coatings on NaOH treated Ti-6Al-4V alloy using sol–gel precursor. Mater Sci Technol 23:1005–1007CrossRefGoogle Scholar
  4. Bowers KT, Keller JC, Randolph BA, Wick DG, Michaels CM (1992) Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants 7:302–310PubMedGoogle Scholar
  5. Brammer KS, Oh S, Frandsen CJ, Jin S (2011)Biomaterials and biotechnology schemes utilizing TiO2 nanotube arrays. In: Biomaterials science and engineering, Intechopen, London, UK, pp 193–210Google Scholar
  6. Branemark P, Hansson B, Adell R, Breine U, Lindstrom J, Hallen O, Ohman A (1977) Osseointegrated implants in the treatment of edentulous jaw. Scand J Plast Reconstr Surg Suppl 16:1–132PubMedGoogle Scholar
  7. Buser D, Nydegger T, Oxland T, Cochran DL, Schenk RK, Hirt HP, Snetivy D, Nolte LP (1999) Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. J Biomed Mater Res 45(2):75–83CrossRefGoogle Scholar
  8. Chen Q, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Eng R 87:1–57CrossRefGoogle Scholar
  9. Cheng H, Xiong W, Fang Z, Guan H, Wu W, Li Y, Zhang Y, Alvarez MM, Gao B, Huo K, Xu J, Xu N, Zhang C, Fu J, Khademhosseini A, Li F (2016) Strontium (Sr) and silver (Ag) loaded nanotubular structures with combined osteoinductive and antimicrobial activities. Acta Biomater 31:388–400CrossRefGoogle Scholar
  10. Datta N, Holtorf HL, Sikavitsas VI, Jansen JA, Mikos AG (2005) Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Biomaterials 26:971–977CrossRefPubMedPubMedCentralGoogle Scholar
  11. de Assis AF, Beloti MM, Crippa GE, de Oliveira PT (2009) M. Morra development of the osteoblastic phenotype in human alveolar bone-derived cells grown on a collagen type I-coated titanium surface. Clin Oral Implants Res 20:240–246CrossRefPubMedPubMedCentralGoogle Scholar
  12. Duan K, Wang R (2006) Surface modifications of bone implants through wet chemistry. J Mater Chem 16(24):2309–2321CrossRefGoogle Scholar
  13. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants – a review. Prog Mater Sci 54:397–425CrossRefGoogle Scholar
  14. Germanier Y, Tosatti S, Broggini N, Textor M, Buser D (2006) Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces. A histomorphometric study in miniature pigs. Clin Oral Implants Res 17:251–257CrossRefPubMedPubMedCentralGoogle Scholar
  15. Giavaresi G, Ambrosio L, Battiston GA et al (2004) Histomorphometric, ultrastructural and microhardness evaluation of the osseointegration of a nanostructured titanium oxide coating by metal-organic chemical vapour deposition: an in vivo study. Biomaterials 25(25):5583–5591CrossRefPubMedPubMedCentralGoogle Scholar
  16. Huang Y, Zhang X, Zhang H, Qiao H, Zhang X, Jia T, Han S, Gao Y, Xiao H, Yang H (2017a) Fabrication of silver- and strontium-doped hydroxyapatite/TiO2 nanotube bilayer coatings for enhancing bactericidal effect and osteoinductivity. Ceram Int 43:992–1007CrossRefGoogle Scholar
  17. Huang Y, Xu Z, Zhang X, Chang X, Zhang X (2017b) Nanotube-formed Ti substrates coated with silicate/silver co-doped hydroxyapatite as prospective materials for bone implants. J Alloys Compd 697:182–199CrossRefGoogle Scholar
  18. Karthega M, Rajendran N (2012) Formation of nanoporous oxide layer over a binary β-phase titanium in simulated body fluid. J Porous Mater 19:573–577CrossRefGoogle Scholar
  19. Khudhair D, Amani Hamedani H, Gaburro J, Shafei S, Nahavandi S, Garmestani H, Bhatti A (2017) Enhancement of electro-chemical properties of TiO2nanotubes for biological interfacing. Mater Sci Eng C 77:111–120CrossRefGoogle Scholar
  20. Kim DG, Shin MJ, Kim KH, Hanawa T (1999) Surface treatments of titanium in aqueous solutions containing calcium and phosphate ions. Biomed Mater Eng 9(2):89–96PubMedGoogle Scholar
  21. Kim J, Kim B, Oh C, Ryu J, Kim H, Park E, No K, Hong S (2018) Effects of NH4F and distilled water on structure of pores in TiO2 nanotube arrays. Sci Rep 8:12487CrossRefPubMedPubMedCentralGoogle Scholar
  22. Langton DJ, Jameson SS, Joyce TJ, Hallab NJ, Natu S, Nargol AV (2010) Early failure of metal-on-metal bearings in hip resurfacing and large diameter total hip replacement: a consequence of excess wear. J Bone Joint Surg Br 92(1):38–46CrossRefGoogle Scholar
  23. Liu X, Chu PK, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep 47(3–4):49–121CrossRefGoogle Scholar
  24. Liu W, Merrett K, Griffith M, Fagerholm P, Dravida S, Heyne B, Scaiano JC, Watsky MA, Shinozaki N, Lagali N, Munger R, Li F (2008) Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials 29:1147–1158CrossRefGoogle Scholar
  25. Meimandi-Parizi A, Oryan A, Moshiri A (2013) Role of tissue engineered collagen based tridimensional implant on the healing response of the experimentally induced large Achilles tendon defect model in rabbits: a long term study with high clinical relevance. J Biomed Sci 20:28CrossRefPubMedPubMedCentralGoogle Scholar
  26. Minagar S, Berndt CC, Wang J, Ivanova E, Wen C (2012) A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater 8(8):2875–2888CrossRefGoogle Scholar
  27. Mirak M, ALizadeh M, Salahinejad E, Amini R (2015) Zn–HA–TiO2 nanocomposite coatings electrodeposited on a NiTi shape memory alloy. Surf Interface Anal 47:176–183CrossRefGoogle Scholar
  28. Nakayama I, Suzuki A, Kusumoto Y, Takakuwa K, Ikuta T (1989) Method of forming a thin film by chemical vapor deposition, US 4800105 A, January 1989Google Scholar
  29. Nasab MB, Hassan MR, Sahari BB (2010) Metallic biomaterials of knee and hip-a review. Trends Biomater Artif Organs 24:69–82Google Scholar
  30. Navarro M, Michiardi A, Castano O, Planell J (2008) Biomaterials in orthopaedics. J R Soc Interface 5:1137–1158CrossRefPubMedPubMedCentralGoogle Scholar
  31. Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8:3888CrossRefPubMedPubMedCentralGoogle Scholar
  32. Nishiguchi S, Nakamura T, Kobayashi M, Kim HM, Miyaji F, Kokubo T (1999) The effect of heat treatment on bone-bonding ability of alkali-treated titanium. Biomaterials 20(5):49–500CrossRefGoogle Scholar
  33. Oji MO, Wood JV, Downes S (1999) Effects of surface-treated cp Ti and Ti6Al4V alloy on the initial attachment of human osteoblasts. J Mater Sci Mater Med 10:869–872CrossRefPubMedPubMedCentralGoogle Scholar
  34. Park JM, Koak JY, Jang JH, Han CH, Kim SK (2006) Osseointegration of anodized titanium implants coated with fibroblast growth factor-fibronectin (FGF-FN) fusion protein. Int J Oral Maxillofac Implants 21:859–866PubMedPubMedCentralGoogle Scholar
  35. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science: an introduction to materials in medicine. Academic, New YorkGoogle Scholar
  36. Salahinejad E, Hadianfard M, Macdonald D, Mozafari M, Walker K, Rad AT, Madihally S, Vashaee D, Tayebi L (2013a) Surface modification of stainless steel orthopaedic implants by sol–gel ZrTiO4and ZrTiO4–PMMA coatings. J Biomed Nanotechnol 9:1327–1335CrossRefPubMedPubMedCentralGoogle Scholar
  37. Salahinejad E, Hadianfard M, Macdonald D, Mozafari M, Vashaee D, Tayebi L (2013b) A new double-layer sol–gel coating to improve the corrosion resistance of a medical-grade stainless steel in a simulated body fluid. Mater Lett 97:162–165CrossRefGoogle Scholar
  38. Schwartz Z, Martin JY, Dean DD, Simpson J, Cochran DL, Boyan BD (1996) Effect of titanium surface roughness on chondrocyte proliferation, matrix production, and differentiation depends on the state of cell maturation. J Biomed Mater Res 30(2):145–155CrossRefPubMedPubMedCentralGoogle Scholar
  39. Shokuhfar T, Sinha-Ray S, Sukotjo C, Yarin AL (2013) Intercalation of anti-inflammatory drug molecules within TiO2 nanotubes. RSC Adv 3:17380CrossRefGoogle Scholar
  40. Tengvall P, Elwing H, Sjöqvist L, Lundström I, Bjursten LM (1989) Interaction between hydrogen peroxide and titanium: a possible role in the biocompatibility of titanium. Biomaterials 10:118e20Google Scholar
  41. Tomsia AP, Saiz E, Song J, Bertozzi CR (2005) Biomimetic bonelike composites and novel bioactive glass coatings. Adv Eng Mater 7:999–1004CrossRefGoogle Scholar
  42. Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoc’h ‘ M (2000) Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am 82(4):457–476CrossRefGoogle Scholar
  43. van den Beucken JJ, Walboomers XF, Leeuwenburgh SC, Vos MR, Sommerdijk NA (2007) Multilayered DNA coatings: in vitro bioactivity studies effects on osteoblast-like cell behavior. Acta Biomater 3:587–596CrossRefGoogle Scholar
  44. Xiao SJ, Kenausis G, Textor M (2001) In: Brunette DM, Tengvall P, Textor M, Thompson P (eds) Titanium in medicine: material science, surface science, engineering, biological responses and medical applications. Springer-Verlag, Berlin/Heidelberg, pp 417–455CrossRefGoogle Scholar
  45. Zhang BG, Myers DE, Wallace GG, Brandt M, Choong PF (2014) Bioactive coatings for orthopaedic implants—recent trends in development of implant coatings. Int J Mol Sci 15(7):11878–11921CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.NIT RaipurRaipurIndia

Personalised recommendations