Poor Early Growth and Age-Associated Disease

  • Jane L. Tarry-Adkins
  • Susan E. Ozanne
Part of the Subcellular Biochemistry book series (SCBI, volume 91)


The prevalence of age-associated disease is increasing at a striking rate globally and there is evidence to suggest that the ageing process may actually begin before birth. It has been well-established that the status of both the maternal and early postnatal environments into which an individual is exposed can have huge implications for the risk of developing age-associated disease, including cardiovascular disease (CVD), type-2 diabetes (T2D) and obesity in later life. Therefore, the dissection of underlying molecular mechanisms to explain this phenomenon, known as ‘developmental programming’ is a highly investigated area of research. This book chapter will examine the epidemiological evidence and the animal models of suboptimal maternal and early postnatal environments and will discuss the progress being made in the development of safe and effective intervention strategies which ultimately could target those ‘programmed’ individuals who are known to be at-risk of age-associated disease.


Developmental programming Ageing Disease Mechanisms 


  1. Aiken CE, Ozanne SE (2014) Transgenerational developmental programming. Hum Reprod Update 20:63–75PubMedCrossRefGoogle Scholar
  2. Aiken CE, Tarry-Adkins JL, Ozanne SE (2013) Suboptimal nutrition in utero causes DNA damage and accelerated aging of the female reproductive tract. FASEB J 27:3959–3965PubMedCrossRefGoogle Scholar
  3. Alfaradhi MZ, Fernandez-Twinn DS, Martin-Gronert MS et al (2014) Oxidative stress and altered lipid homeostasis in the programming of offspring fatty liver by maternal obesity. Am J Physiol Regul Intergr Comp Physiol 307:R26–R34CrossRefGoogle Scholar
  4. Alfaradhi MZ, Kusinski LC, Fernandez-Twinn DS et al (2016) Maternal obesity in pregnancy developmentally programs adipose tissue inflammation in young, lean male mice. Endocrinology 157(11):4246–4256PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bakayska SL, Mucci LA, Slagbloom PE et al (2007) Telomere length predicts survival independent of genetic influences. Aging Cell 6:769–774CrossRefGoogle Scholar
  6. Barker DJ, Hales CN, Fall CH et al (1993) Type 2 (non-insulin dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 36:62–67CrossRefPubMedGoogle Scholar
  7. Belsky DW, Caspi A, Houts R et al (2015) Quantification of biological aging in young adults. PNAS 112(30):E4104–E4110PubMedCrossRefGoogle Scholar
  8. Benediktsson R, Lindsay R, Noble J et al (1993) Glucocorticoid exposure in utero: a new model for adult hypertension. Lancet 341:339–341PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bianco-Miotto T, Craig JM, Gasser YP (2017) Epigenetics and DOHaD: from basics to birth and beyond. J Dev Orig Health Dis 8:513–519PubMedCrossRefGoogle Scholar
  10. Bieswal F, Ahn MT, Reusens B et al (2006) The importance of catch-up growth after early malnutrition for the programming of obesity in the male rat. Obesity 14:1330–1334PubMedCrossRefGoogle Scholar
  11. Blackburn EH, Greider CW, Szostak JW (2006) Telomeres and telomerase: the path from maize, tetrahymena and yeast to human cancer and aging. Nat Med 12:1133–1138PubMedCrossRefGoogle Scholar
  12. Blackburn EH, Epel ES, Lin J (2015) Human telomere biology: a contributory and interactive factor in aging, disease risks and protection. Science 350(6265):1193–1198PubMedCrossRefGoogle Scholar
  13. Blackmore HL, Niu Y, Fernandez-Twinn DS et al (2014) Maternal diet-induced obesity programs cardiovascular dysfunction in adult male mouse offspring independent of current body weight. Endocrinology 155:3970–3980PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bol VV, Delattre AI, Reusens B et al (2009) Forced catch-up growth after fetal protein restriction alters the adipose tissue gene expression program leading to obesity in adult mice. Am J Physiol Regul Integr Comp Physiol 297:R291–R299PubMedCrossRefGoogle Scholar
  15. Boney CM, Verma A, Tucker R et al (2005) Metabolic syndrome in childhood: assocations with birthweight, maternal obesity, and gestational diabetes mellitus. Paediatrics 115:e290–e296CrossRefGoogle Scholar
  16. Bourque SL, Gragasin FS, Quon AL et al (2013) Prenatal hypoxia causes long-term alterations in vascular endothelin-1 function in aged male, but not female, offspring. Hypertension 62:753–758PubMedCrossRefGoogle Scholar
  17. Calabrese V, Cornelius C, Cuzzocrea S et al (2011) Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Mol Asp Med 32:279–304CrossRefGoogle Scholar
  18. Campisano SE, Echarte SM, Podaza E (2017) Protein malnutrition during fetal programming induces fatty liver in adult male offspring rats. J Physiol Biochem 73:275–285PubMedCrossRefGoogle Scholar
  19. Choi J, Li C, MacDonald TJ et al (2011) Emergence of insulin resistance in juvenile baboon offspring of mothers exposed to moderate maternal nutrient restriction. Am J Physiol Regul Integr Comp Physiol 301:R757–R762PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cleasby ME, Kelly PAT, Walker BR et al (2003) Programming of rat muscle and fat metabolism by in utero overexposure to glucocorticoids. Endocrinology 144:999–1007PubMedCrossRefGoogle Scholar
  21. Corstius HB, Zimanyi MA, Maka N et al (2005) Effect of intrauterine growth restriction on the number of cardiomyocytes in rat hearts. Pediatr Res 57:796–800PubMedCrossRefGoogle Scholar
  22. Crowther NJ, Cameron N, Trusler J et al (1998) Association with poor glucose tolerance and rapid postnatal growth in seven-year old children. Diabetologia 41:1163–1167PubMedCrossRefGoogle Scholar
  23. Crowther NJ, Trusler J, Cameron N et al (2000) Relation between weight gain and beta-cell secretory activity and non-esterified fatty acid production in 7 year old African children: results from the Birth to Ten study. Diabetologia 43:978–985PubMedCrossRefGoogle Scholar
  24. Dabelea D, Pettitt DJ, Hanson RL et al (1999) Birth weight, type 2 diabetes, and insulin resistance in Pima Indian children and adults. Diabetes Care 22:944–950PubMedCrossRefGoogle Scholar
  25. Dahri S, Snoeck A, Reusens-Billen B et al (1991) Islet function in offspring of mothers on low-protein diet during lactation. Diabetes 40:115–120PubMedCrossRefGoogle Scholar
  26. de Almeida Faria J, Duque-Guimaraes D, Carpenter AAM et al (2017) A post-weaning obesogenic diet exacerbates the detrimental effects of maternal obesity on offspring insulin signaling in adipose tissue. Sci Rep 7:44949PubMedPubMedCentralCrossRefGoogle Scholar
  27. Deelen J, Beekman M, Codd V et al (2014) Leukocyte telomere length associates with prospective mortality independent of immune-related parameters and known genetic markers. Int J Epidemiol 43:878–886PubMedPubMedCentralCrossRefGoogle Scholar
  28. Delahaye F, Breton C, Risold PY et al (2008) Maternal perinatal undernutrition drastically reduces postnatal leptin surge and affects the development of arcuate nucleus proopiomelanocortin neurons in neonatal male rat pups. Endocrinology 149:470–475PubMedCrossRefGoogle Scholar
  29. de Rooj SR, Painter RC, Phillips DI et al (2006) Impaired insulin secretion after prenatal exposure to the Dutch famine. Diabetes Care 29:1897–1901CrossRefGoogle Scholar
  30. de Vries A, Holmes MC, Heijnis A et al (2007) Prenatal dexamethasone exposure induces changes in nonhuman primate offspring cardiometabolic and hypothalamic-pituitary-adrenal axis function. J Clin Invest 117:1058–1067PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dodic M, Moritz K, Koukoulas I et al (2002) Programming effects of short prenatal exposure to cortisol. FASEB J 16:1017–1026PubMedCrossRefGoogle Scholar
  32. Dodson RB, Miller TA, Powers K et al (2017) Intrauterine growth restriction influences vascular remodelling and stiffening in the weanling rat more than sex or diet. Am J Physiol Heart Circ Physiol 312:H250–H264PubMedCrossRefGoogle Scholar
  33. Ekamper P, van Poppel F, Stein AD et al (2014) Independent and additive association of prenatal famine exposure and intermediary life conditions with adult mortality between 18–63 years. Soc Sci Med 119:232–239PubMedCrossRefGoogle Scholar
  34. Entringer S, Epel ES, Kumsta R et al (2011) Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood. Proc Natl Acad Sci U S A 108:E513–E518PubMedPubMedCentralCrossRefGoogle Scholar
  35. Entringer S, Epel ES, Lin J et al (2013) Maternal psychological stress during pregnancy is associated with newborn leukocyte telomere length. Am J Obestet Gynecol 208:e1–e7Google Scholar
  36. Eriksson JG (2006) Early growth, and coronary heart disease and type 2 diabetes: experiences from the Helsinki Birth Cohort studies. Int J Obes 30(Suppl. 4):S18–S22CrossRefGoogle Scholar
  37. Eriksson JG (2016) Developmental origins of adult health and disease – from a small body size at birth to epigenetics. Ann Med 48:456–467PubMedCrossRefGoogle Scholar
  38. Eriksson J, Forsen T, Tuomilehto J et al (1999) Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ 318:427–443PubMedPubMedCentralCrossRefGoogle Scholar
  39. Eriksson J, Forsen T, Tuomilehto J (2000) Fetal and childhood growth and hypertension in adult life. Hypertension 36:790–794PubMedCrossRefGoogle Scholar
  40. Estourgie-van Burk GF, Bartels M, Hoekstra RA et al (2009) A twin study of cognitive costs of low birth weight and catch-up growth. J Pediatr 154:29–32PubMedCrossRefGoogle Scholar
  41. Fall CH, Osmond C, Barker DJ et al (1995) Fetal and growth and cardiovascular risk factors for women. BMJ 310:428–432PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fall CHD, Stein CE, Kumaran K et al (1998) Size at birth, maternal weight and type 2 diabetes in South India. Diabet Med 15:220–227PubMedCrossRefGoogle Scholar
  43. Fernandez-Twinn DS, Wayman A, Ekizoglou S et al (2005) Maternal protein restriction leads to hyperinsulinaemia and reduced insulin signaling protein expression in 21-mo old offspring. Am J Physiol Regul Integr Comp Physiol 288:R368–R373PubMedCrossRefGoogle Scholar
  44. Figueroa H, Alvarado C, Cifuentes J et al (2017) Oxidative damage and nitric oxide synthase induction by surgical uteroplacental circulation in the rabbit. Prenat Diagn 37(5):453–459PubMedCrossRefGoogle Scholar
  45. Gallo LA, Denton KM, Moritz KM et al (2012) Long-term alteration in maternal blood pressure and renal function after pregnancy in normal and growth-restricted rats. Hypertension 60:206–213PubMedCrossRefGoogle Scholar
  46. Gambling L, Andersen HS, Czopek A et al (2004) Effect of timing of iron supplementation on maternal and neonatal growth and iron status of iron-deficit pregnant rats. J Physiol 561:195–203PubMedPubMedCentralCrossRefGoogle Scholar
  47. Garafono A, Czernichow P, Breant B (1997) In utero undernutrition impairs beta cell development. Diabetologia 40:1231–1234CrossRefGoogle Scholar
  48. Garafono A, Czernichow P, Breant B (1998) Beta-cell mass and proliferation following late fetal and early postnatal malnutrition in the rat. Diabetologia 41:1114–1120CrossRefGoogle Scholar
  49. Garafono A, Czernichow P, Breant B (1999) Effect of ageing on beta cell mass and function in rats malnourished during the perinatal period. Diabetologia 42:711–718CrossRefGoogle Scholar
  50. Germani D, Puglianiello A, Cianfarani S (2008) Uteroplacental insufficiency down regulates insulin receptor and affects expression of key enzymes of long-chain fatty (LCFA) metabolism in skeletal muscle at birth. Cardiovasc Diabetol 7:7–14CrossRefGoogle Scholar
  51. Giussani DA, Camm EJ, Niu Y et al (2012) Developmental programming of cardiovascular dysfunction by prenatal hypoxia and oxidative stress. PLoS One 7:e31017PubMedPubMedCentralCrossRefGoogle Scholar
  52. Grunnet L, Vielwerth S, Vaag A et al (2007) Birth weight is nongenetically associated with glucose intolerance in elderly twins, independent of adiposity. J Intern Med 262:96–103PubMedCrossRefGoogle Scholar
  53. Hales CN, Barker DJP, Clark PMS, Cox LJ, Fall C, Osmond C, Winter PD (1991) Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 303:1019–1022PubMedPubMedCentralCrossRefGoogle Scholar
  54. Halvorsen CP, Andolf E, Hu J et al (2006) Discordant twin growth in utero and differences in blood pressure and endothelial dysfunction at 8 years of age. J Intern Med 259:155–163PubMedCrossRefGoogle Scholar
  55. Harman D (1956) Aging: A theory based on free radical and radiation chemistry. J Gerontol 11:298–300PubMedCrossRefGoogle Scholar
  56. Hauton D, Al-Shammari A, Gaffney EA et al (2015) Maternal hypoxia decreases capillary supply and increases metabolic inefficiency leading to divergence in myocardial oxygen supply and demand. PLoS One 10:e0127424PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hemachandra AH, Howards PP, Furth SL et al (2007) Birth weight, postnatal growth and risk for high blood pressure at 7 years of age: results from the Collaborative Perinatal Project. Pediatrics 119:e1264–e1270PubMedCrossRefGoogle Scholar
  58. Hendrix N, Berghella V (2008) Non-placental causes of intrauterine growth restriction. Sem Perinatal 32:161–165CrossRefGoogle Scholar
  59. Heslehurst N, Rankin J, Wilkinson JR et al (2010) A nationally representative study of maternal obesity in England, UK: trends in incidence and demographic inequalities in 619 323 births, 1989–2007. Int J Obes 34:420–428CrossRefGoogle Scholar
  60. Hokke S, Puelles VG, Armitage JA et al (2016) Maternal fat feeding augments offspring nephron endowment in mice. PLoS One 11:e0161578PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hoppe CC, Evans RG, Bertram JF et al (2007) Effects of dietary protein restriction on nephron number in the mouse. Am J Physiol Regul Integr Comp Physiol 292:R1768–R1774PubMedCrossRefGoogle Scholar
  62. Huber HF, Ford SM, Bartlett TQ et al (2015) Increased aggressive and affiliative display behavior in intrauterine growth restricted baboons. J Med Primatol 44:143–147PubMedPubMedCentralCrossRefGoogle Scholar
  63. Jakoubek V, Bibova J, Herget J et al (2008) Chronic hypoxia increases fetoplacental vascular resistance and vasoconstrictor reactivity in the rat. Am J Physiol Heart Circ Physiol 294:H1638–H1644PubMedCrossRefGoogle Scholar
  64. Kafka P, Vajnerova O, Hampi V (2016) Chronic hypoxia increases fetoplacental vascular resistance in rat placental perfused with blood. Bratisl Lek Listy 117:583–586PubMedGoogle Scholar
  65. Kane AD, Herrara EA, Camm EJ (2013) Vitamin C prevents intrauterine programming of in-vivo cardiovascular dysfunction in the rat. Circ J 77:2604–2611PubMedCrossRefGoogle Scholar
  66. Kim DW, Young SL, Grattan DR et al (2014) Obesity during pregnancy disrupts placental morphology, cell proliferation, and inflammation in a sex-specific manner across gestation in the mouse. Biol Reprod 90:1–11CrossRefGoogle Scholar
  67. Kirk SL, Samuelsson AM, Argenton M et al (2009) Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring. PLoS One 4:e5870PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kuo AH, Li C, Huber HF et al (2017) Cardiac remodelling in a baboon model of intrauterine growth restriction mimics accelerated aging. J Physiol 595:1093–1110PubMedCrossRefGoogle Scholar
  69. Lane RH, Chandorkar AK, Flozak AS et al (1998) Intrauterine growth-retardation alters mitochondrial gene expression and function in fetal and juvenile rat skeletal muscle. Pediatr Res 43:563–570PubMedCrossRefGoogle Scholar
  70. Lane RH, Kelley DE, Gruetzmacher EM et al (2001) Uteroplacental insufficiency alters hepatic fatty acid-metabolizing enzymes in juvenile and adult rats. Am J Phys Regul Integr Comp Phys 280:R183–R190Google Scholar
  71. Langley-Evans SC, Philips GJ, Jackson AA (1994) In utero exposure to maternal low protein diets induces hypertension in weanling rats, independently of maternal blood pressure changes. Clin Nutr 13:319–324PubMedCrossRefGoogle Scholar
  72. Langley-Evans SC, Welham SJ, Jackson AA (1999) Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat. Life Sci 64:965–974PubMedCrossRefGoogle Scholar
  73. Law CM, Shiell AW, Newsome CA et al (2002) Fetal, infant and childhood growth and adult blood pressure: a longitudinal study from birth to 22 years of age. Circulation 105:1088–1092PubMedCrossRefGoogle Scholar
  74. Lee HS (2015) Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood. Nutrients 7:9492–9507PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lee SP, Hande P, Yeo GS et al (2017) Correlation of cord blood telomere length with birth weight. BMC Res Notes 10:469PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lesage J, Blondeau B, Grino M et al (2001) Maternal undernutrition during late gestation induces fetal overexposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamo-pituitary adrenal axis in the newborn rat. Endocrinology 142:1692–1702PubMedCrossRefGoogle Scholar
  77. Lewis RM, Petry CJ, Ozanne SE et al (2001a) Effects of maternal iron restriction in the rat on blood pressure, glucose tolerance, and serum lipids in 3-month old offspring. Metabolism 50:562–567PubMedCrossRefGoogle Scholar
  78. Lewis RM, Doherty CB, James LA et al (2001b) Effects of maternal iron restriction on placental vascularization in the rat. Placenta 22:534–539PubMedCrossRefGoogle Scholar
  79. Lewis RM, Forhead AJ, Petry CJ et al (2002) Long-term programming of blood pressure by maternal iron restriction in the rat. Br J Nutr 88(3):283–290PubMedCrossRefGoogle Scholar
  80. Lim K, Zimanyi M, Black MJ (2006) Effect of maternal protein restriction in rats on cardiac fibrosis and capillarization in adulthood. Pediatr Res 60:83–87PubMedCrossRefGoogle Scholar
  81. Lisle SJ, Lewis RM, Petry CJ et al (2003) Effect of maternal iron restriction during pregnancy on renal morphology in the adult rat offspring. Br J Nutr 90(1):33–39PubMedCrossRefGoogle Scholar
  82. Lithell HO, McKeigue PM, Berglund L et al (1996) Relation of size at birth to non-insulin dependent diabetes and insulin concentrations in men aged 50–60 years. BMJ 312:406–410PubMedPubMedCentralCrossRefGoogle Scholar
  83. Marchetto NM, Glynn RA, Ferry ML et al (2016) Prenatal stress and newborn telomere length. Am J Obstet Gynecol 215:e1–e8CrossRefGoogle Scholar
  84. Mazzuca MQ, Wlodek ME, Dragomir NM et al (2010) Uteroplacental insufficiency programs regional vascular dysfunction and alters arterial stiffness in female offspring. J Physiol 588:1997–2010PubMedPubMedCentralCrossRefGoogle Scholar
  85. McGillick EV, Orgeig S, Allison BJ et al (2017) Maternal chronic hypoxia increases expression of genes regulating lung liquid movement and surfactant maturation in male foetuses in late gestation. J Physiol 595:4329–4350PubMedPubMedCentralCrossRefGoogle Scholar
  86. Mi J, Law C, Zhang K-L et al (2000) Effects of infant birth weight and maternal body mass index in pregnancy on components of the insulin resistance syndrome in China. Ann Intern Med 132:253–260PubMedCrossRefGoogle Scholar
  87. Monrad RN, Grunnet LG, Rasmussen EL et al (2009) Age-dependent nongenetic influences of birth weight and adult body fat in insulin sensitivity in twins. J Clin Endocrinol Metab 94:2394–2399PubMedCrossRefGoogle Scholar
  88. Moritz KM, Mazzuca MQ, Siebell AL et al (2009) Uteroplacental insufficiency causes a nephron deficit, modest renal insufficiency but no hypertension with ageing in female rats. J Physiol 587:2635–2646PubMedPubMedCentralCrossRefGoogle Scholar
  89. Needham BL, Rehkopf D, Adler N et al (2015) Leukocyte telomere length and mortality in the National Health and Nutritional Examination Survey, 1999–2002. Epidemiology 26(4):528–535PubMedPubMedCentralCrossRefGoogle Scholar
  90. Nyrienda MJ, Lindsay RS, Kenyon CJ et al (1998) Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxylase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J Clin Invest 101:2174–2181CrossRefGoogle Scholar
  91. Ozanne SE, Hales CN (2004) Lifespan: catch up growth and obesity in male mice. Nature 427:411–412PubMedCrossRefGoogle Scholar
  92. Ozanne SE, Wang CL, Coleman N et al (1996) Altered muscle sensitivity in the male offspring of protein-malnourished rats. Am J Phys 271:E1128–E1134, 1996Google Scholar
  93. Ozanne SE, Dorling MW, Wang CL et al (2001) Impaired PI-3 kinase activation in adipocytes from early growth-restricted male rats. Am J Physiol Endocrinol Metab 280:E543–E539CrossRefGoogle Scholar
  94. Ozanne SE, Jensen CB, Tingey KJ et al (2005) Low birthweight is associated with specific changes in muscle insulin-signaling protein expression. Diabetologia 48:547–552PubMedCrossRefGoogle Scholar
  95. Peterside IE, Selak MA, Simmons RA (2003) Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats. Am J Physiol Endocrinol Metab 285:E1258–E1266PubMedCrossRefGoogle Scholar
  96. Petrik J, Reusens B, Arany E et al (1999) A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat and associated with a reduced pancreatic expression of insulin-like growth factor II. Endocrinology 140:4861–4873PubMedCrossRefGoogle Scholar
  97. Petry CJ, Dorling MW, Pawlak DB (2002) Diabetes in old male offspring of rat dams fed a reduced protein diet. Int J Exp Diabetes Res 2(2):139–143CrossRefGoogle Scholar
  98. Pettitt DJ, Jovanovic L (2001) Birth weight as a predictor of type 2 diabetes mellitus: The U-shaped curve. Curr Diab Rep 1:78–81PubMedCrossRefGoogle Scholar
  99. Poulsen P, Vaag AA, Kyvik KO et al (1996) Low birth weight is associated with NIDDM in discordant monozygotic and dizygotic twin pairs. Diabetologia 40(4):439–446CrossRefGoogle Scholar
  100. Poulsen P, Kyvik KO, Vaag A et al (1999) Heritability of type II (non-insulin dependent) diabetes mellitus and abnormal glucose tolerance – a population based twin study. Diabetologia 42:139–145PubMedCrossRefGoogle Scholar
  101. Poulsen P, Levin K, Beck-Nielsen H et al (2002) Age-dependent impact of zygosity and birth weight on insulin secretion and insulin action on twins. Diabetologia 45:1645–1659Google Scholar
  102. Ravelli AC, van der Meulen HJP, Michels RPJ et al (1998) Glucose intolerance in adults after prenatal exposure to famine. Lancet 351:173–177PubMedCrossRefGoogle Scholar
  103. Reynolds RM, Allan KM, Raja EA et al (2013) Maternal obesity during pregnancy and premature mortality from cardiovascular event in adult offspring: follow up of 1 323 275 person years. BMJ 347:f4539PubMedPubMedCentralCrossRefGoogle Scholar
  104. Richter T, von Zglincki T (2007) A continuous correlation between oxidative stress and telomere length in fibroblasts. Exp Gerontol 42(11):1039–1042PubMedCrossRefGoogle Scholar
  105. Richter HG, Hansell JA, Raut S et al (2009) Melatonin improves placental efficiency and birth weight and increases placental expression of antioxidant enzymes in undernourished pregnancy. J Pineal Res 46:357–364PubMedCrossRefGoogle Scholar
  106. Richter HG, Camm EJ, Modi BN et al (2012) Ascorbate prevents placental oxidative stress and enhances birth weight in hypoxic pregnancy rats. J Physiol 590:1377–1387PubMedPubMedCentralCrossRefGoogle Scholar
  107. Roseboom T, de Rooj S, Painter R (2006) The Dutch famine and its long-term consequences for adult health. Early Hum Dev 82:485–491PubMedCrossRefGoogle Scholar
  108. Samuelsson AM, Matthews PA, Argenton M et al (2008) Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance. Hypertension 51:383–392PubMedCrossRefGoogle Scholar
  109. Scholl TO (2011) Maternal iron status: Relation to fetal growth, length of gestation and the neonate’s iron endowment. Nutr Rev 69(suppl 1):S23–S29PubMedPubMedCentralCrossRefGoogle Scholar
  110. Selak MA, Storey BT, Peterside I et al (2003) Impaired oxidative phosphorylation in skeletal muscle of intrauterine growth-retarded rats. Am J Physiol Endocrinol Metab 285:E130–E137PubMedCrossRefGoogle Scholar
  111. Shah A, Reyes LM, Morton JS et al (2016) Effect of resveratrol on metabolic and cardiovascular function in male and female adult offspring exposed to prenatal hypoxia and a high-fat diet. J Physiol 594:1465–1482PubMedCrossRefGoogle Scholar
  112. Shah A, Quon A, Morton JS et al (2017) Postnatal resveratrol supplementation improves cardiovascular function in male and female intrauterine growth restricted offspring. Physiol Rep 5(2):e13109PubMedPubMedCentralCrossRefGoogle Scholar
  113. Sharpless N, DePhino RA (2004) Telomeres, stem cells, and cancer. J Clin Invest 113:160–168PubMedPubMedCentralCrossRefGoogle Scholar
  114. Shelley P, Martin-Gronert MS, Rowlerson A (2009) Altered skeletal muscle insulin signaling and mitochondrial complex II-III linked activity in adult offspring of obese mice. Am J Physiol Regul Integr Comp Physiol 297:R675–R681PubMedPubMedCentralCrossRefGoogle Scholar
  115. Simmons RA, Templeton LG, Gertz SJ (2001) Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes 50:2279–2286PubMedCrossRefGoogle Scholar
  116. Singhal A, Cole TJ, Lucas A (2001) Early nutrition in preterm infants and later blood pressure: two cohorts after randomised trials. Lancet 357:413–419PubMedCrossRefGoogle Scholar
  117. Singhal A, Farooqi IS, O’Rahilly S et al (2002) Early nutrition and leptin concentrations in later life. Am J Clin Nutr 75:993–999PubMedCrossRefGoogle Scholar
  118. Singhal A, Cole TJ, Fewtrell M et al (2004) Breastmilk feeding and lipoprotein profile in adolescents born preterm: follow up of a prospective randomised trial. Lancet 363:1571–1578PubMedCrossRefGoogle Scholar
  119. Singhal A, Kennedy K, Lanigan J et al (2010) Nutrition in infancy and long-term risk of obesity: evidence from 2 randomized control trials. Am J Clin Nutr 92:1133–1144PubMedCrossRefGoogle Scholar
  120. Snoeck A, Remacle C, Reusens B et al (1990) Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonat 57:107–118CrossRefGoogle Scholar
  121. Tam WH, Ma RCW, Ozaki R et al (2017) In utero exposure to maternal hyperglycemia increases childhood cardiometabolic risk in the offspring. Diabetes Care 40:679–686PubMedPubMedCentralCrossRefGoogle Scholar
  122. Tang J, Zhu Z, Xia S et al (2015) Chronic hypoxia in pregnancy affected vascular tone of renal interlobar arteries in the offspring. Sci Rep 5:9723PubMedPubMedCentralCrossRefGoogle Scholar
  123. Tarry-Adkins JL, Martin-Gronert MS, Chen JH et al (2008) Maternal diet influences DNA damage, aortic telomere length, oxidative stress, and antioxidant defense capacity in rats. FASEB J 22:2037–2044PubMedCrossRefGoogle Scholar
  124. Tarry-Adkins JL, Chen JH, Smith NS et al (2009) Poor maternal nutrition followed by accelerated postnatal growth leads to telomere shortening and increased markers of cell senescence in rat islets. FASEB J 23:1521–1528PubMedCrossRefGoogle Scholar
  125. Tarry-Adkins JL, Chen JH, Jones RH et al (2010) Poor maternal nutrition leads to alterations in oxidative stress, antioxidant defense capacity, and markers of fibrosis in rat islets: potential underlying mechanisms for development of the diabetic phenotype in later life. FASEB J 24:2762–2771PubMedCrossRefGoogle Scholar
  126. Tarry-Adkins JL, Blackmore HL, Martin-Gronert MS et al (2013) Coenzyme Q10 prevents accelerated cardiac aging in a rat model of poor maternal nutrition and accelerated postnatal growth. Mol Metab 2:480–490PubMedPubMedCentralCrossRefGoogle Scholar
  127. Tarry-Adkins JL, Fernandez-Twinn DS, Chen JH et al (2014) Nutritional programming of coenzyme Q10: potential for prevention and intervention? FASEB J 28:5398–5405PubMedPubMedCentralCrossRefGoogle Scholar
  128. Tarry-Adkins JL, Fernandez-Twinn DS, Madsen R et al (2015) Coenzyme Q10 prevents insulin signaling dysregulation and inflammation prior to development of insulin resistance in male offspring of a rat model of poor maternal nutrition and accelerated postnatal growth. Endocrinology 156:3528–3537PubMedPubMedCentralCrossRefGoogle Scholar
  129. Tarry-Adkins JL, Fernandez-Twinn DS, Hargreaves IP (2016a) Coenzyme Q10 prevents hepatic fibrosis, inflammation and oxidative stress in a male model of poor maternal nutrition and accelerated postnatal growth. Am J Clin Nutr 103:579–588PubMedCrossRefGoogle Scholar
  130. Tarry-Adkins JL, Fernandez-Twinn DS, Chen JH (2016b) Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats. Dis Model Mech 9:1221–1229PubMedPubMedCentralCrossRefGoogle Scholar
  131. Taylor PD, McConnell JM, Khan IY et al (2005) Impaired glucose homeostasis and mitochondrial abnormalities in offspring of rat fed a fat-rich diet during pregnancy. Am J Physiol Regul Integr Comp Physiol 288:R134–R139PubMedCrossRefGoogle Scholar
  132. United Nations, Department of Economic and Social Affairs, Population Division (2015) World Population Ageing (ST/ESA/SER.A/390).…/pdf/ageing/WPA2015_Report.pdf. Accessed 20 Nov 2017
  133. Valko M, Leibfritz D, Moncol J et al (2006) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84PubMedCrossRefGoogle Scholar
  134. Vickers MH, Reddy S, Ikenasio A et al (2001) Dysregulation of the adipoinsular axis – a mechanism for the pathogenesis of hyperleptinemia and adipogenic diabetes induced by fetal programming. J Endocrinol 170:323–332PubMedCrossRefGoogle Scholar
  135. von Zglincki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27(7):339–344CrossRefGoogle Scholar
  136. Walton SL, Bielefeldt-Ohmann H, Singh RR et al (2017) Prenatal hypoxia leads to hypertension, renal renin-angiotensin system activation and exacerbates salt- induced pathology in a sex dependent manner. Sci Rep 7:8241PubMedPubMedCentralCrossRefGoogle Scholar
  137. Welham SJ, Wade A, Woolfe AS (2002) Protein restriction in pregnancy is associated with increased apoptosis of mesenchymal cells at the start of rat metanephrogenesis. Kid Int 61:1231–1242CrossRefGoogle Scholar
  138. Welham SJ, Riley PR, Wade A et al (2005) Maternal diet programs embryonic kidney gene expression. Physiol Genomics 22:48–56PubMedCrossRefGoogle Scholar
  139. Wlodek ME, Westcott K, Siebel AL et al (2008) Growth restriction before or after birth reduces nephron number and increases blood pressure in male rats. Kid Int 74:187–195CrossRefGoogle Scholar
  140. Xiao D, Kou H, Zhang L et al (2017) Prenatal food restriction with postnatal high-fat diet alters glucose metabolic function in adult rat offspring. Arch Med Res 48:35–45PubMedCrossRefGoogle Scholar
  141. Zambrano E, Sosa-Larios T, Calzada L et al (2016) Decreased basal insulin secretion from pancreatic islets of pups in a rat model of maternal obesity. J Endocrinol 231:49–57PubMedCrossRefGoogle Scholar
  142. Zhang J, Lewis RM, Wang C et al (2005) Maternal dietary iron restriction modulates hepatic lipid metabolism in the fetuses. Am J Physiol Regul Intergr Comp Physiol 288:R104–R111CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jane L. Tarry-Adkins
    • 1
  • Susan E. Ozanne
    • 1
  1. 1.University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Treatment Centre, Addenbrooke’s HospitalCambridgeUK

Personalised recommendations