Advertisement

Algorithms for Discrete Areal Feature Generalization

  • Haowen Yan
Chapter

Abstract

Discrete areal features refer to the features on maps that are symbolized using polygons and the same type of features are topologically separated. Such examples are common on large or intermediate scale maps, e.g. lakes, ponds, seas, islands, buildings/settlements, parks, squares, playgrounds etc. (Fig. 7.1).

References

  1. Bader M., Barrault M., Weibel R., 2005, Building displacement over a ductile truss, International Journal of Geographical Information Science, 19(8–9): 915–936CrossRefGoogle Scholar
  2. Bader M., Weibel R., 1997, Detecting and resolving size and proximity conflicts in the generalization of polygon maps, in the Proceedings of the 18th International Cartographic Conference, Stockholm, Sweden, pp.1525–1532Google Scholar
  3. Boffet A., Rocca S., 2001, Identification of spatial structures within urban blocks for town characterization, in the Proceedings of the 20th International Cartographic Conference, Beijing, China, 2001 (CD-ROM)Google Scholar
  4. Christophe S., Ruas A., 2002, Detecting building alignments for generalisation purposes, In: DE Richardson, and P van Oosterom (eds.). Advances in Spatial Data Handling (10th International Symposium on Spatial Data Handling), Berlin: Springer-Verlag, pp.419–432CrossRefGoogle Scholar
  5. Duchêne C., Bard S., Barillot X., 2003, Quantitative and qualitative description of building orientation, in The 5th ICA workshop on progress in automated map generalization, Paris, FranceGoogle Scholar
  6. Goyal R.K., 2000, Similarity assessment for cardinal directions between extended spatial objects, PhD thesis, The University of MaineGoogle Scholar
  7. Jones C.B., Bundy G.L., Ware J.M., 1995, Map generalization with a triangulated data structure, Cartography and Geographic Information Systems, 22(4): 317–331Google Scholar
  8. Jones C.B., Ware J.M., 2005, Map generalization in the Web age, International Journal of Geographical Information Science, 19 (8–9):859–870CrossRefGoogle Scholar
  9. Li Z., Yan H., Ai T., Chen J., 2004, Automated building generalization based on urban morphology and gestalt theory, International Journal of Geographical Information Science, 18(5):513–534.CrossRefGoogle Scholar
  10. McMaster R.B., Shea K.S., 1992, Generalization in digital cartography, Washington DC: Association of American CartographersGoogle Scholar
  11. Palmer S.E., 1992, Common region: a new principle of perceptual grouping, Cognitive Psychology, 24(2): 436–447, 1992.CrossRefGoogle Scholar
  12. Palmer S.E., Rock I., 1994, Rethinking perceptual organization: the role of uniform connectedness. Psychonomic Bulletin and Review, 1:515–519CrossRefGoogle Scholar
  13. Papadias D., Sellis T., 1994, The qualitative representation of spatial knowledge in two-dimensional space, Very Large Database Journal, 3(4): 479–516CrossRefGoogle Scholar
  14. Peuquet D., Zhan C.X., 1987, An algorithm to determine the directional relationship between arbitrarily-shaped polygons in the plane, Pattern Recognition, 20(1): 65–74CrossRefGoogle Scholar
  15. Rainsford D., Mackaness W., 2002, Template matching in support of generalization of rural buildings, In: DE Richardson, and P van Oosterom (eds.). Advances in Spatial Data Handling (10th International Symposium on Spatial Data Handling), Berlin: Springer-Verlag, pp. 137–151.CrossRefGoogle Scholar
  16. Regnauld N., 2001, Contextual building typification in automated map generalization, Algorithmica, 30(2): 312–333CrossRefGoogle Scholar
  17. Rock I., 1996, Indirect Perception. London: MIT PressGoogle Scholar
  18. Ruas A., 1998, A method for building displacement in automated map generalization, International Journal of Geographical Information Science, 12(8):789–803CrossRefGoogle Scholar
  19. Ruas A., Plazanet C., 1996, Strategies for automated generalization, in the Proceedings of Spatial Data Handling, pp.6.1–6.18Google Scholar
  20. Shekhar S, Liu X., Chawla S., 1999, An object model of direction and its application, Geoinformatica, 3(4):357–379CrossRefGoogle Scholar
  21. Steinhauer J.H., Wiese T., Freksa C., Barkowsky T., 2001, Recognition of abstract regions in cartographic maps, in: Montello DR, ed, Spatial Information Theory, Springer, Berlin, pp.306–321.CrossRefGoogle Scholar
  22. SSC, 2005, Topographic Maps: Map Graphics and Generalization, Cartographic Publication Series No. 17. Swiss Society of Cartography (CD-ROM)Google Scholar
  23. Weibel R., 1996, A typology of constraints to line simplification, Advances on GIS II. M. J. Kraak and M. Molenaar (ed.), London: Taylor & Francis, pp. 9A.1–9A.14Google Scholar
  24. Yan H., Chu Y., Li Z., Guo R., 2006, A quantitative description model for directional relations based on direction groups, Geoinformatica, 10(2):177–195CrossRefGoogle Scholar
  25. Sadahiro Y., 1997, Cluster perception in the distribution of point objects, Cartographica, Vol.34(1):49–61Google Scholar
  26. Wertheimer M., 1923, Law of organization in perceptual forms. In A Source Book of Gestalt Psychology, edited by W. D. Ellis (Kegan Paul, Trench, Trubner), pp.71–88Google Scholar
  27. Yan H., Weibel R., Yang B., 2008, A multi-parameter approach to automated building grouping and generalization, Geoinformatica, 12:73–89CrossRefGoogle Scholar
  28. Patricios N.N., 2002, Urban design principles of the original neighbourhood concepts, Urban Morphology, 6(1), 21–32Google Scholar
  29. Gold C.M., 1991, Problems with handling spatial data-the Voronoi Approach, CISM Journal, 45(1): 65–80Google Scholar
  30. Christensen, A.H.J., 1999, Cartographic line generalization with waterlines and medial axes. Cartography and Geographic Information Science, 26:19–32CrossRefGoogle Scholar
  31. Klein R.M., Meiser S., 1993, Randomized incremental construction of abstract Voronoi diagrams. International Journal of Computational Geometry and Applications, 3:157–184CrossRefGoogle Scholar
  32. Li Z.L., Su B., 1995, From phenomena to essence: envisioning the nature of digital map generalization, Cartographic Journal, 32:45–47CrossRefGoogle Scholar
  33. Rauber T., Rünger G., 2013, Parallel Programming: for Multicore and Cluster Systems. Springer Science & Business MediaGoogle Scholar
  34. McCool M., Reinders J., Robison A., 2013, Structured Parallel Programming: Patterns for Efficient Computation, ElsevierGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Haowen Yan
    • 1
  1. 1.Faculty of GeomaticsLanzhou Jiaotong UniversityLanzhouChina

Personalised recommendations