Algorithms for Discrete Areal Feature Generalization

  • Haowen Yan


Discrete areal features refer to the features on maps that are symbolized using polygons and the same type of features are topologically separated. Such examples are common on large or intermediate scale maps, e.g. lakes, ponds, seas, islands, buildings/settlements, parks, squares, playgrounds etc. (Fig. 7.1).


  1. Bader M., Barrault M., Weibel R., 2005, Building displacement over a ductile truss, International Journal of Geographical Information Science, 19(8–9): 915–936Google Scholar
  2. Bader M., Weibel R., 1997, Detecting and resolving size and proximity conflicts in the generalization of polygon maps, in the Proceedings of the 18th International Cartographic Conference, Stockholm, Sweden, pp.1525–1532Google Scholar
  3. Boffet A., Rocca S., 2001, Identification of spatial structures within urban blocks for town characterization, in the Proceedings of the 20th International Cartographic Conference, Beijing, China, 2001 (CD-ROM)Google Scholar
  4. Cetinkaya S., Basaraner M., Burghardt D., 2015, Proximity-based grouping of buildings in urban blocks: a comparison of four algorithms, Geocarto International, 30(6): 618–632Google Scholar
  5. Christophe S., Ruas A., 2002, Detecting building alignments for generalisation purposes, In: DE Richardson, and P van Oosterom (eds.). Advances in Spatial Data Handling (10th International Symposium on Spatial Data Handling), Berlin: Springer-Verlag, pp.419–432Google Scholar
  6. Duchêne C., Bard S., Barillot X., 2003, Quantitative and qualitative description of building orientation, in The 5th ICA workshop on progress in automated map generalization, Paris, FranceGoogle Scholar
  7. Goyal R.K., 2000, Similarity assessment for cardinal directions between extended spatial objects, PhD thesis, The University of MaineGoogle Scholar
  8. Jones C.B., Bundy G.L., Ware J.M., 1995, Map generalization with a triangulated data structure, Cartography and Geographic Information Systems, 22(4): 317–331Google Scholar
  9. Jones C.B., Ware J.M., 2005, Map generalization in the Web age, International Journal of Geographical Information Science, 19 (8–9):859–870Google Scholar
  10. Li Z., Yan H., Ai T., Chen J., 2004, Automated building generalization based on urban morphology and gestalt theory, International Journal of Geographical Information Science, 18(5):513–534.Google Scholar
  11. McMaster R.B., Shea K.S., 1992, Generalization in digital cartography, Washington DC: Association of American CartographersGoogle Scholar
  12. Palmer S.E., 1992, Common region: a new principle of perceptual grouping, Cognitive Psychology, 24(2): 436–447, 1992.Google Scholar
  13. Palmer S.E., Rock I., 1994, Rethinking perceptual organization: the role of uniform connectedness. Psychonomic Bulletin and Review, 1:515–519Google Scholar
  14. Papadias D., Sellis T., 1994, The qualitative representation of spatial knowledge in two-dimensional space, Very Large Database Journal, 3(4): 479–516Google Scholar
  15. Peuquet D., Zhan C.X., 1987, An algorithm to determine the directional relationship between arbitrarily-shaped polygons in the plane, Pattern Recognition, 20(1): 65–74Google Scholar
  16. Rainsford D., Mackaness W., 2002, Template matching in support of generalization of rural buildings, In: DE Richardson, and P van Oosterom (eds.). Advances in Spatial Data Handling (10th International Symposium on Spatial Data Handling), Berlin: Springer-Verlag, pp. 137–151.Google Scholar
  17. Regnauld N., 2001, Contextual building typification in automated map generalization, Algorithmica, 30(2): 312–333Google Scholar
  18. Rock I., 1996, Indirect Perception. London: MIT PressGoogle Scholar
  19. Ruas A., 1998, A method for building displacement in automated map generalization, International Journal of Geographical Information Science, 12(8):789–803Google Scholar
  20. Ruas A., Plazanet C., 1996, Strategies for automated generalization, in the Proceedings of Spatial Data Handling, pp.6.1–6.18Google Scholar
  21. Shekhar S, Liu X., Chawla S., 1999, An object model of direction and its application, Geoinformatica, 3(4):357–379Google Scholar
  22. Steinhauer J.H., Wiese T., Freksa C., Barkowsky T., 2001, Recognition of abstract regions in cartographic maps, in: Montello DR, ed, Spatial Information Theory, Springer, Berlin, pp.306–321.Google Scholar
  23. SSC, 2005, Topographic Maps: Map Graphics and Generalization, Cartographic Publication Series No. 17. Swiss Society of Cartography (CD-ROM)Google Scholar
  24. Weibel R., 1996, A typology of constraints to line simplification, Advances on GIS II. M. J. Kraak and M. Molenaar (ed.), London: Taylor & Francis, pp. 9A.1–9A.14Google Scholar
  25. Yan H., Chu Y., Li Z., Guo R., 2006, A quantitative description model for directional relations based on direction groups, Geoinformatica, 10(2):177–195Google Scholar
  26. Sadahiro Y., 1997, Cluster perception in the distribution of point objects, Cartographica, Vol.34(1):49–61Google Scholar
  27. Wertheimer M., 1923, Law of organization in perceptual forms. In A Source Book of Gestalt Psychology, edited by W. D. Ellis (Kegan Paul, Trench, Trubner), pp.71–88Google Scholar
  28. Yan H., Weibel R., Yang B., 2008, A multi-parameter approach to automated building grouping and generalization, Geoinformatica, 12:73–89Google Scholar
  29. Patricios N.N., 2002, Urban design principles of the original neighbourhood concepts, Urban Morphology, 6(1), 21–32Google Scholar
  30. Gold C.M., 1991, Problems with handling spatial data-the Voronoi Approach, CISM Journal, 45(1): 65–80Google Scholar
  31. Christensen, A.H.J., 1999, Cartographic line generalization with waterlines and medial axes. Cartography and Geographic Information Science, 26:19–32Google Scholar
  32. Klein R.M., Meiser S., 1993, Randomized incremental construction of abstract Voronoi diagrams. International Journal of Computational Geometry and Applications, 3:157–184Google Scholar
  33. Li Z.L., Su B., 1995, From phenomena to essence: envisioning the nature of digital map generalization, Cartographic Journal, 32:45–47Google Scholar
  34. Rauber T., Rünger G., 2013, Parallel Programming: for Multicore and Cluster Systems. Springer Science & Business MediaGoogle Scholar
  35. McCool M., Reinders J., Robison A., 2013, Structured Parallel Programming: Patterns for Efficient Computation, ElsevierGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Haowen Yan
    • 1
  1. 1.Faculty of GeomaticsLanzhou Jiaotong UniversityLanzhouChina

Personalised recommendations