Advertisement

Description and Generalization of River Networks

  • Haowen Yan
Chapter

Abstract

What does a tree and a river have in common in structure? The answer is rather obvious: a river’s skeleton on the map is a tree-like structure. But why rivers are tree-like in structure?

References

  1. Ai T., Liu Y., Chen J., 2006, The hierarchical watershed partitioning and data simplification of river network, In Progress in Spatial Data Handling, Riedl A., Kainz W., Elmes G.A., Eds.; Springer: Berlin/Heidelberg, Germany, pp: 617–632.CrossRefGoogle Scholar
  2. Ai T., Liu Y., Huang Y., 2007, The hierarchical watershed partitioning and generalization of river network, Acta Geodaetica Et CartographicaSinica, 36(2): 231–236.Google Scholar
  3. Bard S., Ruas A., 2005, Why and how evaluating generalised data? In Developments in Spatial Data Handling; Springer: Berlin/Heidelberg, Germany, pp: 327–342.Google Scholar
  4. Buttenfield B.P., Stanislawski L.V., Brewer C.A., 2010, Multiscale representations of water: tailoring generalization sequences to specific physiographic regimes. In Proceedings of the GIScience 2010, Zurich, Switzerland, 15–17 September 2010, pp: 14–17.Google Scholar
  5. Charlton R., 2007, Fundamentals of Fluvial Geomorphology; Routledge: London, UK.CrossRefGoogle Scholar
  6. Chen Y., Wilson J.P., Zhu Q., Zhou Q., 2012, Comparison of drainage-constrained methods for DEM generalization, Computers and Geosciences, 48: 41–49.CrossRefGoogle Scholar
  7. De Serres B.,Roy A.G., 1990, Flow direction and branchinggeometry at junctions in dendritic river networks, The Professional Geographer, 42(2):149–201.CrossRefGoogle Scholar
  8. Ethem A., 2010, Introduction to Machine Learning, MIT Press.Google Scholar
  9. Feder J., 1988, Fractals. Plenum Press, New York.CrossRefGoogle Scholar
  10. Fiorentino M. and Claps P., 1992, On what can be explained by the entropy of a channel network. In: V.P. Singh and M. Fiorentino (Editors). Entropy and Energy Dissipation in Water Resources. Kluwer, Dordrecht, The Netherlands, pp. 139–154.CrossRefGoogle Scholar
  11. Fiorentino M., Claps P. and Singh V.P., 1993, An entropy-based morphological analysis of river-basin networks. Water Resources Research, 29(4): 1215–1224.CrossRefGoogle Scholar
  12. Génevaux J.D., Galin É., Guérin E., Peytavie A., Beneš B., 2013, Terrain generation using procedural models based on hydrology. ACM Trans. Graph. 32: 1–10.CrossRefGoogle Scholar
  13. Hack J., 1957, Studies of longitudinal stream profiles in Virginia and Maryland, U.S. Geological Survey Professional Paper, 1957, 294-B.Google Scholar
  14. He Z., 2004, Principles and methods of Map data processing models, Wuhan: Wuhan University Process. (in Chinese)Google Scholar
  15. Hentschel H.G.E., Procaccia I., 1983, The infinite number of dimensions of fractals and strange attractors, Physica, 8D: 435–444.Google Scholar
  16. Horton R.E., 1945, Erosional development of streams and their drainage basins: hydro-physical approach to quantitative morphology, Geological Society of America Bulletin, 56 (3): 275–370.CrossRefGoogle Scholar
  17. LaBarbera P., Rosso R., 1987, The fractal geometry of river networks, Eos Transactions on AGU, 68(44): 12–76.Google Scholar
  18. Li Z., Zhu Q., Gold C., 2010, Digital Terrain Modeling: Principles and Methodology; CRC Press: Boca Raton, Florida, USA.Google Scholar
  19. Lovejoy S., Schertzer D., Tsonis A.A., 1987, Functional box counting and multiple elliptical dimensions in rain, Science, 235: 1036–1038.CrossRefGoogle Scholar
  20. Mandelbrot B.B., 1983, The Fractal Geometry of Nature, W. H. Freeman, New York.CrossRefGoogle Scholar
  21. Mandelbrot B.B., 1986, Self-affine fractal sets. in: L. Pietronero and E. Tosatti (Editors). Fractals in Physics. North-Holland, Amsterdam, pp. 3–28.Google Scholar
  22. Ritter M.E., 2016, The physical environment: an introduction to physical geography, available online: http://www.earthonlinemedia.com/ebooks/tpe_3e/title_page.html (accessible on 28 November 2017).
  23. Scheidegger A.E., 1967, On the topology of river nets, Water Resources Research, 3(1): 103–106.CrossRefGoogle Scholar
  24. Shannon C.E., 1948, The mathematical theory of communications, I and II. Bell System Technical Journal, 27: 379–423.CrossRefGoogle Scholar
  25. Shao L., He Z., Ai Z., Song X., 2004, Automatic generalization of river network based on BP neural network techniques, Geomatics and Information Science of Wuhan University, 29(6): 555–557.Google Scholar
  26. Shreve R., 1966, Statistical law of stream numbers, Journal of Geology, 74 (1) :17–37.CrossRefGoogle Scholar
  27. Shreve, R. L., 1967, Infinite topologically random channel networks, Journal of Geology, 75:178–186.CrossRefGoogle Scholar
  28. Stanislawski L.V., 2009, Feature pruning by upstream drainage area to support automated generalization of the United States National Hydrography Dataset. Computers, Environment and Urban Systems, 33: 325–333.CrossRefGoogle Scholar
  29. Strahler A.N., 1952, Hypsometric (area altitude) analysis of erosional topography, Geological Society of America Bulletin, 63: 1117–1142.CrossRefGoogle Scholar
  30. Strahler A.N., 1957, Quantitative analysis of watershed geomorphology, Transactions of the American Geophysical Union, 38 (6): 913–920.Google Scholar
  31. Tarboton D.G., Bras R.L., Rodriguez-Iturbe I., 1998, The fractal of nature of river networks, Water Resources Research, 24(8): 1317–1322,CrossRefGoogle Scholar
  32. Thomson R., Brooks R., 2000, Efficient generalization and abstraction of network data using perceptual grouping. In the proceedings of the 5th GeoComputation. University of Greenwich, Kent U.K.Google Scholar
  33. Töpfer, F., Pillewizer, W., 1966. The principles of selection. The Cartographic Journal 3 (1), 10–16.Google Scholar
  34. Touya G. 2006.: A Method for generalization of river networks based on “strokes” and database enrichment.Extended Abstracts Proceedings of 4th International Conference GIScience 2006, Münster, Germany. pp 191–194.Google Scholar
  35. Twidale C.R., 2004, River patterns and their meaning, Earth Science Review, 67: 159–218.CrossRefGoogle Scholar
  36. Wu F., Tan X., Zhan R., Wang L., 2007, Automated selection of river networks based on knowledge representation and inferences, Journal of Liaoning University of Engineering and Technology, 26(2): 183–186.Google Scholar
  37. Zhang Q.N., Quan H., 2005, Construction and application of river tree, ActaScientiarumNaturalium UniversitatisSunyatseni, 44(6): 101–104.Google Scholar
  38. Zhang Q.N., 2006, Generalization of drainage network with density differences, Acta Geodaetica et Cartographic Sinica, 35(2): 191–196.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Haowen Yan
    • 1
  1. 1.Faculty of GeomaticsLanzhou Jiaotong UniversityLanzhouChina

Personalised recommendations