Ultrastructure Observation of M. halliana Pollen During Development

  • Wangxiang Zhang
  • Junjun Fan
  • Yinfeng Xie
  • Ye Peng
  • Ting Zhou
  • Mingming Zhao


In order to explore possible reasons for pollen abortion in monopetalous Malus halliana, we conducted anatomical observations during pollen development. Conventional electron microscopy was used to observe the cytological characteristics of pollen and microspore development in monopetalous M. halliana. We discovered that pollen abortion mainly occurred at the later stage of meiosis in the microsporocytes and during subsequent stages. The main cause of pollen abortion was attributed to the tapetal cells in the anther walls not being able to normally degrade during the tetrad stage, which resulted in the tetrads being unable to normally separate. In addition, the middle-layer cells and tapetal cells could not normally degrade or disintegrate at the tetrad stage and during subsequent stages. This resulted in nutrient deficiency during the pollen maturation stage, ultimately resulting in pollen abortion.


  1. 1.
    Li YN (2001) Researches of germplasm resources of Malus Mill [M]. China Agriculture Press, Beijing, pp 181–183, 315–335Google Scholar
  2. 2.
    Rehder A (1940) Manual of cultivated trees and shrubs [M]. Macmillam Co, New York, pp 389–399Google Scholar
  3. 4.
    Guo L, Shen NX, Wang LQ et al. (2002) Ornamental Crabapple: present status of resources and breeding direction. International Apple Symposium, pp 30–32Google Scholar
  4. 5.
    Joneghani VN (2008) Pollen morphology of the genus Malus (Rosaceae) [J]. Iran J Sci Technol 32(2):89–97Google Scholar
  5. 6.
    Katifori E, Alben S, Cerda E et al (2010) Foldable structures and the natural design of pollen grains [J]. Proc Natl Acad Sci 107(17):7635–7639CrossRefGoogle Scholar
  6. 28.
    Chen WY (2016) Studies on ultrastructure feature, physiological and biochemical of male sterility in Malus halliana [D]. Nanjing Forestry UniversityGoogle Scholar
  7. 29.
    Sun KK (2013) Studies on the reproductive biology of Malus halliana and Malus halliana var. parkmanii [D]. Nanjing Forestry UniversityGoogle Scholar
  8. 30.
    Kim YJ, Jang MG, Zhu L et al (2016) Cytological characterization of anther development in Panax ginseng, Meyer [J]. Protoplasma 253(4):1111CrossRefGoogle Scholar
  9. 31.
    Mirgorodskaya OE, Koteyeva NK, Volchanskaya AV et al (2015) Pollen development in Rhododendron, in relation to winter dormancy and bloom time [J]. Protoplasma 252(5):1313CrossRefGoogle Scholar
  10. 32.
    Clément C, Laporte P, Audran JC (1998) The loculus content and tapetum during pollen development in Lilium [J]. Sex Plant Reprod 11(2):94–106CrossRefGoogle Scholar
  11. 33.
    Hess MW, Hesse M (1994) Ultrastructural observations on anther tapetum development of freeze-fixed Ledebouria socialis Roth (Hyacinthaceae) [J]. Planta 192(3):421–430CrossRefGoogle Scholar
  12. 34.
    Reznickova SA, Dickinson HG (1982) Ultrastructural aspects of storage lipid mobilization in the tapetum of Lilium hybrida var. enchantment [J]. Planta 155(5):400–408CrossRefGoogle Scholar
  13. 35.
    Konyar ST (2018) Dynamic changes in insoluble polysaccharides and neutral lipids in the developing anthers of an endangered plant species, Pancratium maritimum. Plant Systematics and Evolution 304 (3):397–414Google Scholar
  14. 36.
    Cortez PA, Caetano APS, Carmello-Guerreiro SM et al (2015) Anther wall and pollen development in Neotropical species-rich Miconia, (Melastomataceae) [J]. Plant Syst Evol 301(1):217–230CrossRefGoogle Scholar
  15. 37.
    Huysmans S, Elghazaly G, Smets E (1998) Orbicules in angiosperms: morphology, function, distribution, and relation with tapetum types [J]. Bot Rev 64(3):240–272CrossRefGoogle Scholar
  16. 38.
    Ku SJ, Chung YY (2003) Male-sterility of thermosensitive genic male-sterile rice is associated with premature programmed cell death of the tapetum [J]. Planta 217(4):559–565CrossRefGoogle Scholar
  17. 39.
    Santos RP, Mariath JEA, Hesse M (2003) Pollenkitt formation in Ilex paraguariensis a.St.Hil. (Aquifoliaceae) [J]. Plant Syst Evol 237(3-4):185–198CrossRefGoogle Scholar
  18. 40.
    Shallari S, Schwartz C, Hasko A et al (2010) A comparative light and electron microscopic analysis of microspore and tapetum development in fertile and cytoplasmic male sterile radish [J]. Protoplasma 241(4):37–49Google Scholar
  19. 41.
    Shi YL, Zhao S, Yao JL (2009) Premature tapetum degeneration: a major cause of abortive pollen development in photoperiod sensitive genic male sterility in rice [J]. J Integr Plant Biol 51(8):774–781CrossRefGoogle Scholar
  20. 42.
    Wang SP, Zhang GS, Song QL et al (2015) Abnormal development of Tapetum and microspores induced by chemical hybridization agent SQ-1 in wheat [J]. PLoS One 10(3):e0119557CrossRefGoogle Scholar

Copyright information

© Science Press & Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Wangxiang Zhang
    • 1
  • Junjun Fan
    • 1
  • Yinfeng Xie
    • 1
  • Ye Peng
    • 1
  • Ting Zhou
    • 1
  • Mingming Zhao
    • 1
  1. 1.College of ForestryNanjing Forestry UniversityNanjingChina

Personalised recommendations