Advertisement

Disease Modeling of Hematological and Immunological Disorders Using Induced Pluripotent Stem Cells

  • Megumu K. SaitoEmail author
Chapter
Part of the Current Human Cell Research and Applications book series (CHCRA)

Abstract

Abnormalities in both mature hematopoietic cells and immature stem/progenitor cells can cause various diseases. In these disorders, because of limited availability of immature hematopoietic progenitor cells, induced pluripotent stem cells (iPSCs) have a great advantage for establishing their disease models. In this chapter, researches using iPSC-based disease models for hematological and immunological disorders are outlined.

Keywords

Hematopoietic disorders Immunological disorders Induced pluripotent stem cells Disease models Hematopoietic differentiation 

Notes

Acknowledgment

I thank Dr. Peter Karagiannis (CiRA, Kyoto University) for reading and editing the manuscript.

References

  1. 1.
    Paes B, Moco PD, Pereira CG, Porto GS, de Sousa Russo EM, Reis LCJ, et al. Ten years of iPSC: clinical potential and advances in vitro hematopoietic differentiation. Cell Biol Toxicol. 2017;33(3):233–50.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Lim WF, Inoue-Yokoo T, Tan KS, Lai MI, Sugiyama D. Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells. Stem Cell Res Ther. 2013;4(3):71.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Slukvin II. Hematopoietic specification from human pluripotent stem cells: current advances and challenges toward de novo generation of hematopoietic stem cells. Blood. 2013;122(25):4035–46.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Tan YT, Ye L, Xie F, Beyer AI, Muench MO, Wang J, et al. Respecifying human iPSC-derived blood cells into highly engraftable hematopoietic stem and progenitor cells with a single factor. Proc Natl Acad Sci U S A. 2018;115(9):2180–5.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Sugimura R, Jha DK, Han A, Soria-Valles C, da Rocha EL, Lu YF, et al. Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature. 2017;545(7655):432–8.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Suzuki N, Yamazaki S, Yamaguchi T, Okabe M, Masaki H, Takaki S, et al. Generation of engraftable hematopoietic stem cells from induced pluripotent stem cells by way of teratoma formation. Mol Ther. 2013;21(7):1424–31.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Niwa A, Heike T, Umeda K, Oshima K, Kato I, Sakai H, et al. A novel serum-free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progenitors. PLoS One. 2011;6(7):e22261.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Yanagimachi MD, Niwa A, Tanaka T, Honda-Ozaki F, Nishimoto S, Murata Y, et al. Robust and highly-efficient differentiation of functional monocytic cells from human pluripotent stem cells under serum- and feeder cell-free conditions. PLoS One. 2013;8(4):e59243.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci. 2001;98(19):10716–21.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Vodyanik MA, Bork JA, Thomson JA, Slukvin II. Human embryonic stem cell–derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood. 2005;105(2):617–26.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Keller G, Kennedy M, Papayannopoulou T, Wiles MV. Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol. 1993;13(1):473–86.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Ng ES, Davis RP, Azzola L, Stanley EG, Elefanty AG. Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood. 2005;106(5):1601–3.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Nakamura S, Takayama N, Hirata S, Seo H, Endo H, Ochi K, et al. Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell. 2014;14(4):535–48.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Doulatov S, Vo LT, Chou SS, Kim PG, Arora N, Li H, et al. Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via respecification of lineage-restricted precursors. Cell Stem Cell. 2013;13(4):459–70.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Doulatov S, Vo LT, Macari ER, Wahlster L, Kinney MA, Taylor AM, et al. Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors. Sci Transl Med. 2017;9(376):eaah5645.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Haruta M, Tomita Y, Yuno A, Matsumura K, Ikeda T, Takamatsu K, et al. TAP-deficient human iPS cell-derived myeloid cell lines as unlimited cell source for dendritic cell-like antigen-presenting cells. Gene Ther. 2013;20(5):504–13.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Haga E, Endo Y, Haruta M, Koba C, Matsumura K, Takamatsu K, et al. Therapy of peritoneally disseminated colon cancer by TAP-deficient embryonic stem cell-derived macrophages in allogeneic recipients. J Immunol. 2014;193(4):2024–33.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Honda-Ozaki F, Terashima M, Niwa A, Saiki N, Kawasaki Y, Ito H, et al. Pluripotent stem cell model of Nakajo-Nishimura syndrome untangles proinflammatory pathways mediated by oxidative stress. Stem Cell Reports. 2018;10(6):1835–50.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Takata M, Ishiai M, Kitao H. The Fanconi anemia pathway: insights from somatic cell genetics using DT40 cell line. Mutat Res. 2009;668(1–2):92–102.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Mehta PA, Tolar J. Fanconi anemia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews((R)). Seattle: University of Washington. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved; 1993.Google Scholar
  21. 21.
    Mamrak NE, Shimamura A, Howlett NG. Recent discoveries in the molecular pathogenesis of the inherited bone marrow failure syndrome Fanconi anemia. Blood Rev. 2017;31(3):93–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Gari K, Constantinou A. The role of the Fanconi anemia network in the response to DNA replication stress. Crit Rev Biochem Mol Biol. 2009;44(5):292–325.PubMedCrossRefGoogle Scholar
  23. 23.
    Bagby G. Recent advances in understanding hematopoiesis in Fanconi Anemia. F1000Res. 2018;7:105.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Auerbach AD. Fanconi anemia and its diagnosis. Mutat Res. 2009;668(1–2):4–10.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Raya A, Rodriguez-Piza I, Guenechea G, Vassena R, Navarro S, Barrero MJ, et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature. 2009;460(7251):53–9.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Navarro S, Giorgetti A, Raya A, Tolar J. Induced pluripotency and gene editing in fanconi anemia. Curr Gene Ther. 2017;16(5):321–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Liu GH, Suzuki K, Li M, Qu J, Montserrat N, Tarantino C, et al. Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nat Commun. 2014;5:4330.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Suzuki NM, Niwa A, Yabe M, Hira A, Okada C, Amano N, et al. Pluripotent cell models of fanconi anemia identify the early pathological defect in human hemoangiogenic progenitors. Stem Cells Transl Med. 2015;4(4):333–8.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Pastores GM, Hughes DA. Gaucher disease. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews((R)). Seattle: University of Washington. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved; 1993.Google Scholar
  30. 30.
    Sgambato JA, Park TS, Miller D, Panicker LM, Sidransky E, Lun Y, et al. Gaucher disease-induced pluripotent stem cells display decreased erythroid potential and aberrant myelopoiesis. Stem Cells Transl Med. 2015;4(8):878–86.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Arai S, Miyauchi M, Kurokawa M. Modeling of hematologic malignancies by iPS technology. Exp Hematol. 2015;43(8):654–60.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Kumano K, Arai S, Hosoi M, Taoka K, Takayama N, Otsu M, et al. Generation of induced pluripotent stem cells from primary chronic myelogenous leukemia patient samples. Blood. 2012;119(26):6234–42.PubMedCrossRefGoogle Scholar
  33. 33.
    Bedel A, Pasquet JM, Lippert E, Taillepierre M, Lagarde V, Dabernat S, et al. Variable behavior of iPSCs derived from CML patients for response to TKI and hematopoietic differentiation. PLoS One. 2013;8(8):e71596.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D. The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science. 1986;233(4760):212–4.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G. Structural organization of the bcr gene and its role in the Ph’ translocation. Nature. 1985;315(6022):758–61.PubMedCrossRefGoogle Scholar
  36. 36.
    Chao MP, Gentles AJ, Chatterjee S, Lan F, Reinisch A, Corces MR, et al. Human AML-iPSCs reacquire leukemic properties after differentiation and model clonal variation of disease. Cell Stem Cell. 2017;20(3):329–44.e7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Gomez Limia CE, Devalle S, Reis M, Sochacki J, Carneiro M, Madeiro da Costa R, et al. Generation and characterization of a human induced pluripotent stem (iPS) cell line derived from an acute myeloid leukemia patient evolving from primary myelofibrosis carrying the CALR 52bp deletion and the ASXL1 p.R693X mutation. Stem Cell Res. 2017;24:16–20.PubMedCrossRefGoogle Scholar
  38. 38.
    Lee JH, Salci KR, Reid JC, Orlando L, Tanasijevic B, Shapovalova Z, et al. Brief report: human acute myeloid leukemia reprogramming to pluripotency is a rare event and selects for patient hematopoietic cells devoid of leukemic mutations. Stem Cells. 2017;35(9):2095–102.PubMedCrossRefGoogle Scholar
  39. 39.
    Connelly JP, Kwon EM, Gao Y, Trivedi NS, Elkahloun AG, Horwitz MS, et al. Targeted correction of RUNX1 mutation in FPD patient-specific induced pluripotent stem cells rescues megakaryopoietic defects. Blood. 2014;124(12):1926–30.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Boiers C, Richardson SE, Laycock E, Zriwil A, Turati VA, Brown J, et al. A human IPS model implicates embryonic B-myeloid fate restriction as developmental susceptibility to B acute lymphoblastic leukemia-associated ETV6-RUNX1. Dev Cell. 2018;44(3):362–77.e7.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Mulero-Navarro S, Sevilla A, Roman AC, Lee DF, D'Souza SL, Pardo S, et al. Myeloid dysregulation in a human induced pluripotent stem cell model of PTPN11-associated juvenile myelomonocytic leukemia. Cell Rep. 2015;13(3):504–15.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Bhatnagar N, Nizery L, Tunstall O, Vyas P, Roberts I. Transient abnormal myelopoiesis and AML in down syndrome: an update. Curr Hematol Malig Rep. 2016;11(5):333–41.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Yoshida K, Toki T, Okuno Y, Kanezaki R, Shiraishi Y, Sato-Otsubo A, et al. The landscape of somatic mutations in down syndrome-related myeloid disorders. Nat Genet. 2013;45(11):1293–9.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Byrska-Bishop M, VanDorn D, Campbell AE, Betensky M, Arca PR, Yao Y, et al. Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus. J Clin Invest. 2015;125(3):993–1005.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Banno K, Omori S, Hirata K, Nawa N, Nakagawa N, Nishimura K, et al. Systematic cellular disease models reveal synergistic interaction of trisomy 21 and GATA1 mutations in hematopoietic abnormalities. Cell Rep. 2016;15(6):1228–41.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Kotini AG, Chang CJ, Chow A, Yuan H, Ho TC, Wang T, et al. Stage-specific human induced pluripotent stem cells map the progression of myeloid transformation to transplantable leukemia. Cell Stem Cell. 2017;20(3):315–28.e7.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Picard C, Al-Herz W, Bousfiha A, Casanova J-L, Chatila T, Conley ME, et al. Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015. J Clin Immunol. 2015;35(8):696–726.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Dale DC, Person RE, Bolyard AA, Aprikyan AG, Bos C, Bonilla MA, et al. Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood. 2000;96(7):2317–22.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Nayak RC, Trump LR, Aronow BJ, Myers K, Mehta P, Kalfa T, et al. Pathogenesis of ELANE-mutant severe neutropenia revealed by induced pluripotent stem cells. J Clin Invest. 2015;125(8):3103–16.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hiramoto T, Ebihara Y, Mizoguchi Y, Nakamura K, Yamaguchi K, Ueno K, et al. Wnt3a stimulates maturation of impaired neutrophils developed from severe congenital neutropenia patient-derived pluripotent stem cells. Proc Natl Acad Sci U S A. 2013;110(8):3023–8.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Morishima T, Watanabe K, Niwa A, Hirai H, Saida S, Tanaka T, et al. Genetic correction of HAX1 in induced pluripotent stem cells from a patient with severe congenital neutropenia improves defective granulopoiesis. Haematologica. 2014;99(1):19–27.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Pittermann E, Lachmann N, MacLean G, Emmrich S, Ackermann M, Gohring G, et al. Gene correction of HAX1 reversed Kostmann disease phenotype in patient-specific induced pluripotent stem cells. Blood Adv. 2017;1(14):903–14.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Pannicke U, Honig M, Hess I, Friesen C, Holzmann K, Rump EM, et al. Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet. 2009;41(1):101–5.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Lagresle-Peyrou C, Six EM, Picard C, Rieux-Laucat F, Michel V, Ditadi A, et al. Human adenylate kinase 2 deficiency causes a profound hematopoietic defect associated with sensorineural deafness. Nat Genet. 2009;41(1):106–11.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Rissone A, Weinacht KG, la Marca G, Bishop K, Giocaliere E, Jagadeesh J, et al. Reticular dysgenesis-associated AK2 protects hematopoietic stem and progenitor cell development from oxidative stress. J Exp Med. 2015;212(8):1185–202.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Oshima K, Saiki N, Tanaka M, Imamura H, Niwa A, Tanimura A, et al. Human AK2 links intracellular bioenergetic redistribution to the fate of hematopoietic progenitors. Biochem Biophys Res Commun. 2018;497(2):719–25.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Neehus A-L, Lam J, Haake K, Merkert S, Schmidt N, Mucci A, et al. Impaired IFNγ-signaling and mycobacterial clearance in IFNγR1-deficient human iPSC-derived macrophages. Stem Cell Reports. 2018;10(1):7–16.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Nair JJ, Singh TP. Sjogren’s syndrome: review of the aetiology, pathophysiology & potential therapeutic interventions. J Clin Exp Dent. 2017;9(4):e584–e9.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Iizuka-Koga M, Asashima H, Ando M, Lai CY, Mochizuki S, Nakanishi M, et al. Functional analysis of dendritic cells generated from T-iPSCs from CD4+ T cell clones of Sjogren’s syndrome. Stem Cell Reports. 2017;8(5):1155–63.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kubara K, Yamazaki K, Ishihara Y, Naruto T, Lin H-T, Nishimura K, et al. Status of KRAS in iPSCs impacts upon self-renewal and differentiation propensity. Stem Cell Reports. 2018;11(2):380–94.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Crow YJ, Hayward BE, Parmar R, Robins P, Leitch A, Ali M, et al. Mutations in the gene encoding the 3′–5′ DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat Genet. 2006;38(8):917–20.PubMedCrossRefGoogle Scholar
  62. 62.
    Thomas CA, Tejwani L, Trujillo CA, Negraes PD, Herai RH, Mesci P, et al. Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell. 2017;21(3):319–31.e8.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    McDermott MF, Aksentijevich I, Galon J, McDermott EM, Ogunkolade BW, Centola M, et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell. 1999;97(1):133–44.PubMedCrossRefGoogle Scholar
  64. 64.
    Masters SL, Simon A, Aksentijevich I, Kastner DL. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease (*). Annu Rev Immunol. 2009;27:621–68.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Goldbach-Mansky R. Immunology in clinic review series; focus on autoinflammatory diseases: update on monogenic autoinflammatory diseases: the role of interleukin (IL)-1 and an emerging role for cytokines beyond IL-1. Clin Exp Immunol. 2012;167(3):391–404.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Aksentijevich I, Putnam CD, Remmers EF, Mueller JL, Le J, Kolodner RD, et al. The clinical continuum of cryopyrinopathies: novel CIAS1 mutations in North American patients and a new cryopyrin model. Arthritis Rheum. 2007;56(4):1273–85.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Prieur AM, Griscelli C, Lampert F, Truckenbrodt H, Guggenheim MA, Lovell DJ, et al. A chronic, infantile, neurological, cutaneous and articular (CINCA) syndrome. A specific entity analysed in 30 patients. Scand J Rheumatol Suppl. 1987;66:57–68.PubMedCrossRefGoogle Scholar
  68. 68.
    Aksentijevich I, Nowak M, Mallah M, Chae JJ, Watford WT, Hofmann SR, et al. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum. 2002;46(12):3340–8.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Feldmann J, Prieur AM, Quartier P, Berquin P, Certain S, Cortis E, et al. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet. 2002;71(1):198–203.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Tanaka N, Izawa K, Saito MK, Sakuma M, Oshima K, Ohara O, et al. High incidence of NLRP3 somatic mosaicism in patients with chronic infantile neurologic, cutaneous, articular syndrome: results of an International Multicenter Collaborative Study. Arthritis Rheum. 2011;63(11):3625–32.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Saito M, Nishikomori R, Kambe N, Fujisawa A, Tanizaki H, Takeichi K, et al. Disease-associated CIAS1 mutations induce monocyte death, revealing low-level mosaicism in mutation-negative cryopyrin-associated periodic syndrome patients. Blood. 2008;111(4):2132–41.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Hanna J, Markoulaki S, Schorderet P, Carey BW, Beard C, Wernig M, et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell. 2008;133(2):250–64.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Tanaka T, Takahashi K, Yamane M, Tomida S, Nakamura S, Oshima K, et al. Induced pluripotent stem cells from CINCA syndrome patients as a model for dissecting somatic mosaicism and drug discovery. Blood. 2012;120(6):1299–308.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Kawasaki Y, Oda H, Ito J, Niwa A, Tanaka T, Hijikata A, et al. Pluripotent cell-based phenotypic dissection identifies a high-frequency somatic NLRC4 mutation as a cause of autoinflammation. Arthritis Rheumatol. 2016;69(2):447–59.CrossRefGoogle Scholar
  75. 75.
    Blau EB. Familial granulomatous arthritis, iritis, and rash. J Pediatr. 1985;107(5):689–93.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Miceli-Richard C, Lesage S, Rybojad M, Prieur AM, Manouvrier-Hanu S, Hafner R, et al. CARD15 mutations in Blau syndrome. Nat Genet. 2001;29(1):19–20.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Takada S, Kambe N, Kawasaki Y, Niwa A, Honda-Ozaki F, Kobayashi K, et al. Pluripotent stem cell models of Blau syndrome reveal an IFN-gamma-dependent inflammatory response in macrophages. J Allergy Clin Immunol. 2017;141(1):339–349.e11.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    McDermott A, Jacks J, Kessler M, Emanuel PD, Gao L. Proteasome-associated autoinflammatory syndromes: advances in pathogeneses, clinical presentations, diagnosis, and management. Int J Dermatol. 2015;54(2):121–9.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Brehm A, Liu Y, Sheikh A, Marrero B, Omoyinmi E, Zhou Q, et al. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J Clin Invest. 2015;125(11):4196–211.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007;318(5858):1920–3.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. 2011;29(8):731–4.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 2011;29(2):143–8.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Park S, Gianotti-Sommer A, Molina-Estevez FJ, Vanuytsel K, Skvir N, Leung A, et al. A comprehensive, ethnically diverse library of sickle cell disease-specific induced pluripotent stem cells. Stem Cell Reports. 2017;8(4):1076–85.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Tangprasittipap A, Jittorntrum B, Wongkummool W, Kitiyanant N, Tubsuwan A. Generation of induced pluripotent stem cells from peripheral blood CD34+ hematopoietic progenitors of a 31 year old healthy woman. Stem Cell Res. 2017;20:91–3.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Song B, Fan Y, He W, Zhu D, Niu X, Wang D, et al. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev. 2015;24(9):1053–65.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Gaspar HB, Parsley KL, Howe S, King D, Gilmour KC, Sinclair J, et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet. 2004;364(9452):2181–7.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Cavazzana-Calvo M, Hacein-Bey S, de Saint BG, Gross F, Yvon E, Nusbaum P, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science. 2000;288(5466):669–72.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Garate Z, Quintana-Bustamante O, Crane AM, Olivier E, Poirot L, Galetto R, et al. Generation of a high number of healthy erythroid cells from gene-edited pyruvate kinase deficiency patient-specific induced pluripotent stem cells. Stem Cell Reports. 2015;5(6):1053–66.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Brunetti P, Puxeddu A, Nenci G, Migliorini E. Congenital non spherocytic haemolytic anaemia due to pyruvate-kinase deficiency. Acta Haematol. 1963;30:88–102.PubMedCrossRefGoogle Scholar
  92. 92.
    Oski FA, Diamond LK. Erythrocyte pyruvate kinase deficiency resulting in congenital nonspherocytic hemolytic anemia. N Engl J Med. 1963;269:763–70.PubMedCrossRefGoogle Scholar
  93. 93.
    Dreyer AK, Hoffmann D, Lachmann N, Ackermann M, Steinemann D, Timm B, et al. TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells. Biomaterials. 2015;69:191–200.PubMedCrossRefGoogle Scholar
  94. 94.
    Flynn R, Grundmann A, Renz P, Hanseler W, James WS, Cowley SA, et al. CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Exp Hematol. 2015;43(10):838–48.e3.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Laugsch M, Rostovskaya M, Velychko S, Richter C, Zimmer A, Klink B, et al. Functional restoration of gp91phox-oxidase activity by BAC transgenesis and gene targeting in X-linked chronic granulomatous disease iPSCs. Mol Ther. 2016;24(4):812–22.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Clinical ApplicationCiRA, Kyoto UniversityKyotoJapan

Personalised recommendations