Biodiversity and Conservation of Ornamental Crops

  • Tapas Kumar Chowdhuri
  • Kankana Deka


Ornamental plants are grown for decorative purposes in gardens and landscape design, as house plants, for cut flowers and specimen display, and are associated with the mankind from time immemorial. Approximately, 406,700 species of plants are available on Earth, and out of these plants, 85,000–99,000 species of plants have ornamental value such as trees, shrubs, climbers and creepers, palms, ferns, orchids, grasses, bamboos and reeds, cacti and succulents, annuals, bulbs, and other flowering crops, spreading over the tropical, subtropical, and temperate zones of the world. The market for ornamental plants is constantly increasing day by day but at the same time is subjected to periodic trend-driven changes. Indeed, every year, hundreds of new cultivars, replacing the current assortment, are produced. Hence, this diversity in ornamentals constitutes a great breeding material source for development of novel varieties. For this reason, the protection and storage of these valuable genetic resources is of great importance to be always able to meet market demands. Conservation of the biodiversity of the Earth’s ornamental crops is a continuous process of development for human benefit in response to changes in the design of gardens as well as the commercial exploration of different flowering crops. In this chapter, a wide diversity of ornamental species and their methods of conservation using various approaches are described. Presently, ornamental germplasm are conserved through in situ and ex situ methods in forests, national parks, botanical gardens, and arboreta. Also, the use of recent biotechnological tools, ranging from the drying of seeds to cryopreservation of embryos, pollens, etc., has served as a boon in preserving the diversification of ornamentals and also in producing quality planting materials available to the actual market of ornamental plants.


Biodiversity Conservation Cryopreservation Ornamental plants 

Supplementary material


  1. Aitken-Christie, J., Kozai, T., & Smith, M. A. L. (1995). Glossary. In J. Aitken-Christie, T. Kozai, & M. A. L. Smith (Eds.), Automation and environmental control in plant tissue culture (pp. ix–xii). Dordrecht: Kluwer.CrossRefGoogle Scholar
  2. Almond, E. (1993). Changing images. In: J. D. Rodrigo Perez Cultivating green awareness. (pp. 65–68). Spain: Jardin Botanico Canario-Vieray.Google Scholar
  3. Arditti, J., Arditti, M., & Ernst, R.. (1984). Some structural and physiological features which facilitate the survival of orchids. In W. K. Tan (Ed.), Proceedings of the 11th World Orchid conference (pp. 102–105). Miami: International Press.Google Scholar
  4. Bailey, L. H., & Bailey, E. Z. (1976). Hortus Third – A concise dictionary of plants cultivated in the United States and Canada. Revised and expanded by the staff of the Liberty Hyde Bailey Hortorium. New York: Macmillan.Google Scholar
  5. Banerji, B. K. (2011, May 22). Biodiversity of roses. In National conference on forest biodiversity: Earth Living treasure, Uttar Pradesh State Biodiversity Board, NBRI, Lucknow, India, pp. 85–92.Google Scholar
  6. Bapat, V. A., Mhatre, M., & Rao, P. S. (1987). Propagation of Morus indica L. (mulberry) by encapsulated shoot buds. Plant Cell Reports, 6, 393–395.CrossRefGoogle Scholar
  7. Bose, T. K., Dadlani, N. K., & Malik, R. S. (1989). Chapter 3: Rose. In Commercial flowers (pp. 15–132). Calcutta: Naya Prakash.Google Scholar
  8. Bose, T. K., Chowdhury, B., Sharma, S. P. (2008). Cactus and other succulents. Tropical garden plants in colour (Chapter 5, pp. 319–426). Horticulture and Allied Publishers, India.Google Scholar
  9. Chowdhuri, T. K. (2014). Hi-tech Gerbera (Gerbera jamesonii) flower cultivation. AHSI Horticultural Journal, 2(1–2), 16–20.Google Scholar
  10. Dhua, R. S. (1999a). Chapter 11: Rose. In T. K. Bose, R. G. Maiti, R. S. Dhua, & P. Das (Eds.), Floriculture and landscaping (1st edn, pp. 371–373). Calcutta: Naya Prokash.Google Scholar
  11. Dhua, R. S. (1999b). Chapter 13: Chrysanthemum. In T. K. Bose, R. G. Maiti, R. S. Dhua, & P. Das (Eds.), Floriculture and landscaping (1st ed., p. 437). Calcutta: Naya Prokash.Google Scholar
  12. Fukai, S. (1989). Plant regeneration from shoot tips of Dianthus hybrid cryopreservation in liquid nitrogen up to 2 years. Plant Tissue Culture Letters, 6, 177–178.CrossRefGoogle Scholar
  13. Gallard, A., Mallet, R. R., Chevalier, M. M., & Grapin, A. (2011). Limited elimination of two viruses by cryotherapy of pelargonium apices related to virus distribution. CryoLetters, 32(2), 111–122.PubMedGoogle Scholar
  14. Geng, X., Huang, B., Luo, F., Wu, Z., & Qiu, J. (2011). A study on cryopreservation of Gladiolus pollens. Journal of Nanjing Forestry University (Natural Science Edition), 4, 7–12.Google Scholar
  15. Germanà, M. A., Piccioni, E., & Standardi, A. (1999). Effects of encapsulation on Citrus reticulata Blanco somatic embryo conversion. Plant Cell Tissue and Organ Culture, 55, 235–237.Google Scholar
  16. Grapin, A., Gallard, A., Le Bras, C., & Dorion, N. (2011). Cryopreservation: An efficient tool for Pelargonium species long-term conservation. In A. Grapin, et al. (Eds.), Cryo-preservation of Crop Species in Europe (pp. 138–140). COST European Cooperation in Science and Technology, Angers.Google Scholar
  17. Halmagyi, A., Fischer-Kluver, G., Mix-Wagner, G., & Schumacher, H. M. (2004). Cryopres-ervation of Chrysanthemum morifolium (Dendranthema grandiflora Ramat) using different approaches. Plant Cell Reports, 22, 371–375.CrossRefGoogle Scholar
  18. Hirano, T., Godo, T., Mii, M., & Ishikawa, K. (2005). Cryopreservation of immature seeds of Bletilla striata by vitrification. Plant Cell Reports, 23, 534–539.CrossRefGoogle Scholar
  19. Ipeki, Z., & Gozukirmizi, N. (2003). Direct somatic embryogenesis and synthetic seed production from Paulownia elongata. Plant Cell Reports, 22(1), 16–24.Google Scholar
  20. Janeiro, L. V., Ballester, A., & Vieitez, A. M. (1997). In vitro response of encapsulated somatic embryos of camellia. Plant Cell, Tissue and Organ Culture, 51, 119–125.CrossRefGoogle Scholar
  21. Jeong, R. B., Fujiwara, K., & Kozai, T. (1995). Environmental control and photoautotropic micropropagation. In J. Janick (Ed.), Horticultural reviews (Vol. 17, pp. 125–172). New York: Wiley.Google Scholar
  22. Joung, H. Y., Cantor, M., & Kamo, K. (2006). Cryopreservation of Gladiolus cultivars. Acta Horticulturae, 760, 225–231.Google Scholar
  23. Lambardi, M., & De Carlo, A. (2003). Application of tissue culture to the germplasm conservation of temperate broad-leaf trees. In S. M. Jain & K. Ishii (Eds.), Micropropagation of woody trees and fruits (pp. 815–840). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  24. Mukherjee, S. K. (2002). Botany. Orchids (Chapter 1, p. 1). New Delhi: Directorate of Information and Publications of Agriculture, ICAR.Google Scholar
  25. Murashige, T. (1977). Plant cell and organ cultures as horticultural practices. Acta Horticulturae, 78, 17–30.CrossRefGoogle Scholar
  26. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.CrossRefGoogle Scholar
  27. Onishi, N., Sakamoto, Y., & Hirosawa, T. (1994). Synthetic seeds as an application of mass production of embryos. Plant Cell, Tissue and Organ Culture, 39, 137–145.CrossRefGoogle Scholar
  28. Panis, B., & Lambardi, M. (2005, March 5–7). Status of cryopreservation technologies in plants (crops and forest trees). In FAO (Ed.), Proceedings of the International workshop “The role of biotechnology for the characterisation and conservation of crop, forestry, animal and fishery genetic resources”, Turin (Italy), pp. 43–54.Google Scholar
  29. Pattnaik, S., & Chand, P. K. (2000). Morphogenic response of the alginate-encapsulated axillary buds from in vitro shoot cultures of six mulberries. Plant Cell, Tissue and Organ Culture, 60, 177–185.CrossRefGoogle Scholar
  30. Rajasekharan, P. E., Rao, T. M., Janakiram, T., & Ganeshan, S. (1994). Freeze preservation of gladiolus pollen. Euphytica, 80, 105–109.CrossRefGoogle Scholar
  31. Reed, B. M. (2006). Cryopreservation of bermuda grass germplasm by encapsulation dehydration. Crop Science, 46(1), 6–11.CrossRefGoogle Scholar
  32. Refouvelet, E., Le Nours, S., Tallon, C., & Daguin, F. (1998). A new method for in vitro propagation of lilac (Syringa vulgaris L.): Regrowth and storage conditions for axillary buds encapsulated in alginate beads, development of a pre-acclimatisation stage. Scientia Horticulturae, 74, 233–241.CrossRefGoogle Scholar
  33. Roath, W. W., Clark, R. L., Widrlechner, M. P., & Wilson, R. L. (1990). Germplasm resources at the North Central Plant Introduction Station. In J. Janick & J. E. Simon (Eds.), Advances in new crops (pp. 84–90). Portland: Timber Press.Google Scholar
  34. Ruffoni, B., Giovannini, A., Semeria, L., & Savona, M. (2002). Embriogenesi somatica e seme artificiale in alcune specie floricole. Italus Hortus, 9, 84–88.Google Scholar
  35. Saiprasad, G. V. S. (2001). Artificial seeds and their applications. Resonance 39–47.Google Scholar
  36. Saiprasad, G. V. S., & Polisetty, R. (2003). Propagation of three orchid genera using encapsulated protocorm-like bodies. In Vitro Cellular and Developmental Biology – Plant, 39, 42–48.CrossRefGoogle Scholar
  37. Sekizawa, K., Yamamoto, S., Rafique, T., Fukui, K., & Niino, T. (2011). Cryopreservation of in vitro-grown shoot tips of carnation (Dianthus caryophyllus L.) by vitryfication method using aluminium cryo-plates. Plant Biotechnology, 28, 401–405.CrossRefGoogle Scholar
  38. Standardi, A., Micheli, M., & Piccioni, E. (1995). Incapsulamento in alginato di espianti micropropagati. Italus Hortus, 2, 46–52.Google Scholar
  39. Takagi, H., Tien Thinh, N. T., Islam, O. M., Senboku, T., & Sakai, A. (1997). Cryopreservation of in vitro-grown shoot tips of taro (Colocasia esculenta (L.) Schott) by vitrification. 1. Investigation of basic conditions of the vitrification procedure. Plant Cell Reports, 16, 594–599.CrossRefGoogle Scholar
  40. Tan, T. K., Loon, W. S., Khor, E., & Loh, C. S. (1998). Infection of Spathoglottis plicata (Orchidaceae) seeds by mycorrhizal fungus. Plant Cell Reports, 18, 14–19.CrossRefGoogle Scholar
  41. Tay, D. (2003). The Ornamental Plant Germplasm Center – Ranking priority genera for conservation. Hortscience, 38(5), 678. [Abstract].Google Scholar
  42. Thammasiri, K. (2008). Cryopreservation of some Thai orchid species. Acta Horticulturae, 788, 53–62.CrossRefGoogle Scholar
  43. Tiwari, A. K, Singh, K. P, Amrapali, S., Girish, K. S., & Singh, P.J. (2015). Lawn management. ICAR-DFR bulletin 14.Google Scholar
  44. Vishnu, S. (1995). Garden flowers (pp. 1–276). New Delhi: NBT.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Tapas Kumar Chowdhuri
    • 1
  • Kankana Deka
    • 2
  1. 1.Faculty of Horticulture, Department of Floriculture and Landscape ArchitectureBidhan Chandra Krishi ViswavidyalayaNadiaIndia
  2. 2.Department of HorticultureAssam Agricultural UniversityJorhatIndia

Personalised recommendations