Genetic Resources of Guava: Importance, Uses and Prospects

  • Shailendra Rajan
  • Umesh Hudedamani


Guava (Psidium guajava L) is an important perennial fruit crop of the tropical and subtropical regions of the world. It originated in tropical America and gradually became a commercial significant crop in several other countries due to its hardy nature, prolific bearing and high remuneration without much care. The roots, leaves and fruits are used to cure various stomach ailments due their astringency properties. India, China, Thailand, Pakistan, Mexico, Indonesia, Brazil, Bangladesh, the Philippines and the Netherlands are the major guava-producing countries in the world. In a global guava market, Brazil, Thailand, Mexico and Peru are the major exporting countries, while, the USA, China, the Netherlands and Germany are the major importing countries. Guava is facing several agronomic and horticultural problems such as susceptibility to many pathogens especially guava wilt caused by Fusarium oxysporum psidii. There are probably more than 400 guava cultivars around the world, but only a few dozen are responsible for major orchard establishment across the world. The available diversity of crop needs to be studied and evaluated in order to determine the usefulness of germplasm in the crop improvement. An interspecific hybrid of P. molle x P. guajava developed by ICAR-CISH, Lucknow, India, has offered a resistance to guava wilt. The use of prospection, foreign material introduction, and selection of elite individuals from open and controlled pollination has greatly increased the diversity of the available germplasm; however, the original variability has been lost due to various biotic and abiotic factors. Hence there is a need to rescue local germplasm for broadening genetic diversity of the species.


Guava Conservation Wilt Germplasm 


  1. Ahmed, B., Mannan, M. A., & Hossain, S. A. (2011). Molecular characterization of guava (Psidium guajava L.) germplasm by RAPD analysis. International Journal of Natural Sciences, 1(3), 62–67.CrossRefGoogle Scholar
  2. Atkinson, E. (1947). Chromosomes atlas of flowering plants. London: Allen and Unwin Ltd.Google Scholar
  3. Backer, C. A., Bakhuizen, V. D. B., & Reinier, C. (1963). In C. A. Backer & V. D. B. Bakhuizen (Eds.), Flora of Java (Spermotophytes only). Groningen: P. Noordhoff.Google Scholar
  4. Backer, C. A., & Bakhuizen van den Brink, R. C. (1968). Flora of Java. 3 Volumes. Groningen: Noordhoff.Google Scholar
  5. Bailey, L. H. (1976). Hortus Third: A concise dictionary of plants cultivated in the United States and Canada. New York: Macmillan Publishers.Google Scholar
  6. Barbosa, J. M., Asner, G. P., Martin, R. E., Baldeck, C. A., Hughes, F., & Johnson, T. (2016). Determining subcanopy Psidium cattleianum invasion in Hawaiian forests using imaging spectroscopy. Remote Sensing, 8, 33.CrossRefGoogle Scholar
  7. Bettencourt, E., Hazekamp, T., & Perry, M. C. (1992). Directory of germplasm collections. Tropical and subtropical fruits and tree nuts (p. 337). Rome: IBPGR.Google Scholar
  8. Boora, R. S. (2012). Improvement in guava (Psidium guajava l.) – A review. Agricultural Reviews, 33(4), 341–349.Google Scholar
  9. Bose, T. K., Mitra, S. K., Farooqui, A. A., & Sandhu, M. K. (1999). Tropical horticulture (1st ed.p. 297). Kolkata: Nava Prokash Publication.Google Scholar
  10. Catalogue of life. (2010). WCSP in species 2000 and ITIS catalogue of life.Google Scholar
  11. Chandra, R., & Mishra, M. (2007). Biotechnological interventions for improvement of guava (Psidium guajava L.). Acta Horticulturae, (735), 117–125.Google Scholar
  12. Correa, L. C. Santos, C. A. F., & Lima, G. P. P. (2012). Chemical and biochemical characterization of guava and araca fruits from different regions of Brazil. 3rd international symposium on guava and other Myrtaceae, Petrolina, PE, Brazil, p. 20.Google Scholar
  13. Costa da, S. R., & Santos, C. A. F. (2013). Allelic database and divergence among Psidium accessions by using microsatellite markers. Genetics and Molecular Research, 12(4), 6802–6812.CrossRefGoogle Scholar
  14. Crane, H. C., & Balerdi, C. F. (2016). Guava growing in the Florida home landscape (HS4, one of a series of the Horticultural Sciences Department, UF/IFAS Extension, pp. 1–7). Website at
  15. De Candole, A. (1908). Origin of cultivated plants. New York: Appleton.Google Scholar
  16. de Lima, M. A. C., de Assis, J. S., & Gonzaga, N. L. (2002). Caracterização dos frutos de goiabeira e seleção de cultivares na Região do Submédio São Francisco. Revista Brasileira de Fruticultura, 24, 273–276.CrossRefGoogle Scholar
  17. Dinesh, M. R., & Reddy, B. M. C. (2001). Evaluation of Psidium guajava L. accessions and some other Psidium species for fruit characters. Journal of Applied Horticulture, 3(1), 41–43.Google Scholar
  18. Dinesh, M. R., & Vasugi, C. (2010a). Guava improvement in India and future needs. The Journal of Horticultural Sciences, 5, 94–108.Google Scholar
  19. Dinesh, M. R., & Vasugi, C. (2010b). Phenotypic and genotypic variations in fruit characteristics of guava (Psidium guajava). Indian Journal of Agricultural Sciences, 80(11), 62–63.Google Scholar
  20. Ellshoff, Z. E., Gardner, D. E., Wikler, C., & Smith, C. W. (1995). Annotated bibliography of the genus Psidium, with emphasis on P. cattleianum (strawberry guava) and P. guajava (common guava), forest weeds in Hawaii (Technical report 95). Cooperative National Park Resources Study Unit, University of Hawaii at Manoa.Google Scholar
  21. FAOSTAT. (2016). FAOSTAT database collections. Rome: Food and Agriculture Organisation of United Nations. Scholar
  22. Fernández de Oviedo, G. (1535). Historia General y Natural de las Indias: Islas y Tierra-firme del Mar Océano (pp. 770) ([English title not available]). Madrid: Real Academia de la Historia.Google Scholar
  23. Fernández, B. E., & Pelea, P. L. (2015). Genetic breeding of guava (Psidium guajava L.). Cultivos Tropicales, 36(1), 96–110.Google Scholar
  24. Garg, N., Yadav, P., Goel, N., Bhattacharjee, A. K., Rajan, S., & Kumar, R. (2005). Screening of acidic guava accessions for cider preparation. International Guava Symposium, 735, 647–650.Google Scholar
  25. Gates, W. (1952). An Aztec herbal, the classic codex of 1552 (Series publication no 23). Baltimore: Maya Society 1939.Google Scholar
  26. Gill, K. S. (2016). Guavas. In B. Caballero, P. M. Finglas, & F. Toldra (Eds.), Encyclopedia of food and health. Amsterdam: Academic.Google Scholar
  27. Gonzaga Neto, L. (1990). Cultura da goiabeira. Petrolina, pe: Embrapa-Cpatsa, 3(26).Google Scholar
  28. Hamilton, R. A., & Smith, H. S. (1959). Growing guava for processing. Extension Bulletin 63. University of Hawaii.Google Scholar
  29. Hayes, W. B. (1953). Fruit growing in India. Allahabad: Kitabistan.Google Scholar
  30. Hayes, W. B. (1957). The guava and its relative. Fruit growing in India (pp. 286–303). Allahabad: Kitabistan.Google Scholar
  31. Hayes, W. B. (1970). Fruit growing in India [M] (p. 72). Allahabad: Kitabistan.Google Scholar
  32. ISHS. (2016). International society for horticulural science section tropical and subtropical fruits. Newsletter, 14, 1–9.Google Scholar
  33. ITIS. (2017). ITIS, catalogue of life. In WCSP species 2000. Digital resource at Species 2000: Naturalis, Leiden, The Netherlands. ISSN 2405-8858.
  34. Iyer, C. P. A., & Subramanyan, M. D. (1988). IIHR. Selection-8 and improved guava cultivar. South Indian Horticulture, 36(5), 258–259.Google Scholar
  35. Jagtiani, J., Chan, H. T., & Sakai, W. S. (1988). Tropical fruit processing. San Diego: Academic.Google Scholar
  36. Jana, B., Munsi, P. S., & Manna, D. C. (2015). Correlation study of yield, flowering duration and fruit physico – Chemical characters of guava (Psidium guajava L.). World Journal of Agricultural Research, 3(2), 91–93.Google Scholar
  37. Kidaha, L. M., Alakonya, A. E., & Nyende, A. B. (2015). Morphological characters of guava landraces in western and coastal Kenya. American Journal of Experimental Agriculture, 9(6), 1–11.CrossRefGoogle Scholar
  38. Knight, R. J. 1980. Origin and world importance of tropical and subtropical fruit crops. In: Tropical and subtropical fruits. Nagy, S. And Shaw, P.E (Eds.). AVI Publishing West-port. 1–120.Google Scholar
  39. Kothagoda, N., & Rao, A. N. (2009). Medicinal use and fruit development of ten tropical fruit species. Journal of Tropical Medicinal Plants, 10(2), 231–235.Google Scholar
  40. Le, T. H., Hancokc, J. F., & Trinh, T. T. (1998). The fruit crops of Vietnam: Introduced species and their native relatives. Fruit Varieties Journal, 52(3), 158–168.Google Scholar
  41. Luiz, C. C., Carlos, A. F., Santos, F. V., & Gep, P. L. (2011). Antioxidant content in guava (Psidium guajava) and araca (Psidium spp.) germplasm from different Brazilian regions. Plant Genetic Resources: Characterization and Utilization, 9, 384–391.Google Scholar
  42. Manna, D. C., Sarkar, H., & Das, B. (2015). Genetic divergence studies in guava (Psidium guajava L.). Electronic Journal of Plant Breeding, 6(1), 161–166.Google Scholar
  43. Martins, M. V. V., Silveira, S. F., & Maffia, L. A. (2014). Guava fruit loss caused by rust. Summa Phytopathologica, 40(2), 107–113.CrossRefGoogle Scholar
  44. Mauchamp, A. (1997). Threats from alien plant species in the Galapagos Islands. Conservation Biology, 11(1), 260–263.CrossRefGoogle Scholar
  45. Menzel, C. M. (1985). Guava: An exotic fruit with potential in Queensland. Queensland Agricultural Journal, 111(2), 93–98.Google Scholar
  46. MERC. (2013). Market and economic research centre. South African Fruit Trade Flow, 10, 1–37.Google Scholar
  47. Merrill, E. D. (1925). An enumeration of Philippine flowering plants (4 Volumes). Government of the Philippine Islands, Department of Agriculture and Natural Resources, Bureau of Printing, Manila.Google Scholar
  48. Missouri Botanica Garden. (2007). Tropicos database. St. Louis: Missouri Botanical Garden.
  49. Mitra, S. (1997). Postharvest physiology and storage of tropical and subtropical fruits. New York: CAB International.Google Scholar
  50. Mitra, S. K., Irenaeus, T. K. S., Gurung, M. R., & Pathak, P. K. (2012). Taxonomy and importance of Myrtaceae. In 3rd international symposium on guava and other Myrtaceae, Petrolina, PE, Brazil, p. 33.Google Scholar
  51. Morton, J. (1987). Guava. In F. Julia & J. Morton (Eds.), Fruits of warm climates (pp. 356–363). Miami: Creative Resource Systems.Google Scholar
  52. Nasution, F. Y., & Hadiati, S. (2014). Characterization and clustering of some guava germplasm collections based on leaf and fruit characters. Agrivita, 36(1), 91.Google Scholar
  53. Negi, S. S., & Rajan, S. (2007). Improvement of guava through breeding. Acta Horticulturae, 735, 31–37.CrossRefGoogle Scholar
  54. Niedenzu, F. J. (1893). Nova Genera et Species Pantarum seu Prodromus. In H. G. A Engler, & K. A. E. Prantll (Eds.), Naturlichen Pflanzenfamilien, 3(7), 69.Google Scholar
  55. Nisha, K., Shetty, G., & Chaturvedi, A. (2013). Psidium guajava a fruit or medicine – An overview. The Pharma Innovation Journal, 2(8), 63.Google Scholar
  56. Nogueira, A. M., Guilhen, J. H. S., Mangaravite, E., Ferreira, A., & Ferreira, M. F. S. (2012). Discriminant analysis of wild guava tree by morphological descriptors and microsatellites. 3rd international symposium on guava and other myrtaceae, Petrolina, PE, Brazil, p. 15.Google Scholar
  57. Orwa, C., Mutua, A., Kindt, R., Jamnadass, R., & Anthony, S. (2009). Agroforestry database: A tree reference and selection guide version 4.0. World Agroforestry Centre, Kenya.Google Scholar
  58. Pelea, L. P., Gonzalez, A. S., Fernandez, E. B., Rodriguez, N. N. M., Cornide, M. T., & Garcia, J. E. S. (2016). Characterization of genetic diversity in three guava (Psidium guajava L.) populations. Cultivos Tropicales, 37(2), 115–126.Google Scholar
  59. Pereira, F. M., Caryalho, C. A., & Nachtigal, J. C. (2003). S’ecullo XXI: Nova cultivar de goiaberiade dupla finalidade. Rivista Brasilera de Fruiticultura, 25, 498–500.CrossRefGoogle Scholar
  60. Pontikis, C. A. (1996). Psidium guajava L. (Guava). In Y. P. S. Bajaj (Ed.), Trees IV. Biotechnology in agriculture and forestry (p. 35). Berlin/Heidelberg: Springer.Google Scholar
  61. Popenoe, W. (1920). Manual of tropical and subtropical fruits. New York: Macmillan.Google Scholar
  62. PPV and FRA. (2016). Guidelines for the conduct of tests for distinctiveness, uniformity and stability. Guava (Psidium guajava L.). PPV&FRA. Department of Agriculture & Cooperation Ministry of Agriculture and Farmers Welfare. GOI, New Delhi, India, p. 25.Google Scholar
  63. Purseglove, J. W. (1968). Tropical crops: Dicotyledons. New York: Wiley.Google Scholar
  64. Rahim, M. A., Fakir, M. S. A., Hossain, M. M., Alam, M. S., Anwar, M. M., Alam, A. K. M. A., Islam, F., Naher, N., Islam, K. S., Fatema, K., & Ghosh, S. N. (2012). BAU germplasm center – The largest fruit repository in Bangladesh-one stop service for quality planting materials of fruits, conservation, development, production, diversity, research and extension. In Proceedings of the international symposium on minor fruits and medicinal plants for health and ecological security (ISMF & MP), West Bengal, India, pp. 3–6.Google Scholar
  65. Rai, M. K., Asthana, P., Jaiswal, V. S., & Jaiswal, U. (2010). Biotechnological advances in guava (Psidium guajava L.): Recent developments and prospects for further research. Trees, 24, 1–12.CrossRefGoogle Scholar
  66. Rajan, S., Yadava, L. P., Kumar, R., & Saxena, S. K. (2005). Selection possibilities for seed content- A determinant of fresh fruit quality in guava (Psidium guajava L.). Journal of Applied Horticulture, 7, 52–54.Google Scholar
  67. Rajan, S., Yadava, L. P., Kumar, R., & Saxena, S. K. (2007). Genetic divergence in seed characteristics of guava: A basis for parent selection in hybridization. Indian Journal of Horticulture, 64(3), 290–293.Google Scholar
  68. Rajan, S., Yadava, L. P., Kumar, R., & Saxena, S. K. (2008). Direct and indirect effects of seed related characters on number of seed in guava (Psidium guajava L.) fruits. Scientia Horticulturae, 116, 47–51.CrossRefGoogle Scholar
  69. Rajan, S., Misra, A. K., & Ravishankar, H. (2011). Guava descriptor. Lucknow: AICRP (STF), CISH. 19 p.Google Scholar
  70. Rajan, S., Yadava, L. P., Kumar, R., & Saxena, S. K. (2012). Variation among guava (Psidium guajava L.) accessions in seed hardness and its association with fruit characteristics. International Journal of Innovative Horticulture, 1(1), 18–23.Google Scholar
  71. Ray, P. K. (2002). Guava. In Breeding tropical and subtropical fruits (pp. 143–154). New Delhi: Springer.Google Scholar
  72. Risterucci, A. M., Duval, M. F., Rohde, W., & Billottte, N. (2005). Isolation and characterization of microsatellite loci from Psidium guajava L. Molecular Ecology Notes, 5, 745–748.CrossRefGoogle Scholar
  73. Ritter, E. (2012). Guava biotechnologies, genomic achievements and future needs. 3rd international symposium on guava and other myrtaceae, Petrolina, PE, Brazil, p. 15.Google Scholar
  74. Ritter, E., Herran, A., Valdes-Infante, J., Rodriguez-Medina, N. N., Briceno, A., Fermin, G., Sanchez-Teyer, F., Connor-Sanchez, A., Muth, J., Boike, J., Prufer, D., Santos, C. A., Nunes dos Santos, I. C., Rodriguez, M. A., Risterucci, A. M., Billotte, N., Becker, D., & Rohde, W. (2010). Comparative linkage mapping in three Guava mapping populations and construction of an integrated reference map in Guava. In W. Rohde, & G. Fermin (Eds.), Proceedings of the IInd IS on Guava and other Myrtaceae. Acta Horticulturae, p. 849.Google Scholar
  75. Rodriguez, N. N., & Velasaquez, B. (1999). Propagación del guayabo. Informe final de proyecto. Propagación, mejoramiento y conservación de frutales cultivados bajo condiciones tropicales. CITMA. Ciudad de La Habana, 40 p.Google Scholar
  76. Rodriguez, M. N. N., Fermin, G. A., Valdes-Infante, J., Velasquezi, B., Rivero, D., Martinez, D. F., Rodriguez, J., & Rohde, W. (2010a). Illustrated descriptors for guava (Psidium guajava). Acta Horticulturae, 849, 103–110.CrossRefGoogle Scholar
  77. Rodriguez, M. N. N., Valdes, J. J., Rodriguez, J. A., Velasquez, J. B., Rivero, D. F., Martinez, F., Gonzalez, G., Sourd, D. G., Gonzalez, L., & Canizares, J. (2010b). Genetic resources and breeding of guava (Psidium guajava L.) in Cuba. Applied Biotechnology, 27, 238–241.Google Scholar
  78. Ruehle, G. D. (1964). El cultivo de la guayaba en la Florida. Agricultura Tropical, 10, 555–564.Google Scholar
  79. Samson, J. A. (1986). The minor tropical fruits. In Tropical fruits (Vol. 2, p. 270). New York: Longman.Google Scholar
  80. Santos, C. A. F., Correa, L. C., & Costa, S. R. (2011). Genetic divergence among Psidium accessions based on biochemical and agronomic variables. Crop Breeding and Applied Biotechnology, 11, 149–156.CrossRefGoogle Scholar
  81. Saxena, S. K., Rajan, S., Chandra, R., Srivastava, N., & Bajpai, A. (2007). Molecular characterization of closely related open pollinated seedling selections in guava. Acta Horticulturae, (735), 49–55.Google Scholar
  82. Shigeura, G. T., & Bullock, R. M. (1976). Flower induction and fruit production of guava (Psidium guajava L.). Acta Horticulturae, 57, 247.CrossRefGoogle Scholar
  83. Singh, B. P., & Rana, R. S. (1993). Promising fruit introductions. In K. L. Chadha & O. P. Pareek (Eds.), Advance in Horticulture (Vol. 1, pp. 43–66). New Delhi: Malhotra Publishing House.Google Scholar
  84. Singh, T. K., Kumar, A., Mahajan, G., & Kumar, P. (2015). Evaluation of commercial guava (Psidium guajava L.) varieties for growth, yield and quality attributes under rainfed conditions of Vindhya regions. Environment and Ecology, 33(4B), 1867–1870.Google Scholar
  85. Sitther, V., Zhang, D., Harris, D. L., Yadav, A. K., Zee, F. T., Meinhardt, L. W., & Dhekney, S. A. (2014). Genetic characterization of guava (Psidium guajava L.) germplasm in the United States using microsatellite markers. Genetic Resources and Crop Evolution, 61, 829–839.CrossRefGoogle Scholar
  86. Soetopo, L. (1991). Psidium guajava L. In E. W. M. Verheij & R. E. Coronel (Eds.), Record from Proseabase. Bogor: PROSEA (Plant Resources of South-East Asia) Foundation.Google Scholar
  87. Solanki, I. S., Ahlawat, V. P., Charia, A. S., Sehrawat, S. K., & Dahiya, D. S. (2011). Crop improvement scenario in guava. Haryana Journal of Horticultural Sciences, 40(1&2), 50–58.Google Scholar
  88. Soubihe Sobrinho, J. (1951). Estudos b’asicos para o melhoramento da goiabeira (Psidium guajava L.) (p. 166). Sao Paulos.Google Scholar
  89. Swartz, O. P. (1788). Procr. 77.Google Scholar
  90. Tate, D. (2000). Tropical gruit of Thailand. Bangkok: Asia Books Co. Ltd.Google Scholar
  91. Thaipong, K., & Boonprakob, U. (2005). Genetic and environmental variance components in guava fruit qualities. Scientia Horticulturae, 104, 37–47.CrossRefGoogle Scholar
  92. Thaipong, K., Promchot, S., Auvuchanon, A., & Boonprakob, U. (2017). Genetic analysis of guava Germplasm using AFLP markers. International Journal of Agricultural Technology, 13(5), 741–752.Google Scholar
  93. Toro Toro, E. (1993). El Cultivo de la Guayaba.Google Scholar
  94. UN comtrade. (2017). United Nations commerce trade and development. New York and Geneva.
  95. UPOV. (1987). Guidelines for the conduct of tests for distinctness, homogeneity and stability. TG/110/3. Geneve.Google Scholar
  96. USDA. (2009, August 28). USDA, NRS. The plants database. National Plant Data Center, Baton Rouge, LA. USA.
  97. USDA. (2010). USDA ARS, Germplasm Resources Information Network. Psidium friedrichsthalianum in the Germplasm Resources Information Network (GRIN), U.S. Department of Agriculture Agricultural Research Service.Google Scholar
  98. USDA, NRCS. (2009, August 28). The plants database. National Data Center. Baton Rouge, LA, USA.
  99. Usman, M., Samad, W. A., Fatima, B., & Shah, M. H. (2013). Pollen parent enhances fruit size and quality in inter varietal crosses in guava (Psidium guajava). International Journal of Agriculture and Biology, 15, 125–129.Google Scholar
  100. Valdes-Infante, J., Becker, D., Rodriguez, N., Velazquez, B., Gonzalez, G., Sourd, D., Rodriguez, L., Ritter, E., & Rohde, W. (2003). Molecular characterization of Cuban accession of guva (Psidium guajava L.), establishment of a first molecular linkage map and mapping of QTLs for vegetative characters. Journal of Genetics and Breeding, 57, 349–358.Google Scholar
  101. Valdes-Infante, J., Rodriguez, N., Becker, D., Velazquez, G., Sourd, D., Espinosa, J., & Rohde, W. (2007). Microsatellite characterization of guava (Psidium guajava L.), germplasm collections in Cuba. Cultivos Tropicales, 28(3), 61–67.Google Scholar
  102. Valera-Montero, L. L., Munoz-Rodriguez, P. J., Silos-Espino, H., & Flores-Benitez, S. (2016). Genetic diversity of guava (Psidium guajava L.) from Central Mexico revealed by morphological and RAPD markers. International Journal of Experimental Botany, 85, 176–183.Google Scholar
  103. Weinert, I. A. G., & Wyk, V. P. J. (1998). Guava puree with reduced stone cells content: Preparation and characteristics of concentrated and nectars. International Journal of Food Science and Technology, 23(5), 501–510.CrossRefGoogle Scholar
  104. Wilson, C. W. (1980). Guava. In S. Nagy & P. E. Shaw (Eds.), Tropical and subtropical fruits (pp. 279–299). Westport: Corm.Google Scholar
  105. Yadav, A. K. (2006). Guava for valley state agricultural research station.
  106. Yadava, U. L. (1996). Guava production in Georgia under cold-protection structure. In J. Janick (Ed.), Progress in new crops (pp. 451–457). Arlington: ASHS Press.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shailendra Rajan
    • 1
  • Umesh Hudedamani
    • 2
  1. 1.Central Institute for Subtropical HorticultureLucknowIndia
  2. 2.Crop Improvement and Biotechnology DivisionCentral Institute for Subtropical HorticultureLucknowIndia

Personalised recommendations