Application of Anthracene-Based Fluorescent Materials on Green Fluorescent Inkjet Ink

  • Wan ZhangEmail author
  • Hui KuangEmail author
  • Yingjie Xu
  • Hui Wang
  • Beiqing Huang
  • Xianfu Wei
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 543)


Presently, the existing green fluorescent materials are rare earth luminescent material, which cannot reach the requirement of inkjet ink on dispersion and stability because of the inferior solubleness. In this paper, the fluorescent inkjet inks were prepared by anthracene-based derivatives, ink’s printability was tested and the relationship between molecular structure and ink’s printability was researched systematically. Finally, the optimal formula of green fluorescent inkjet ink was obtained. The results showed the photophysical properties of proofs a–c had obvious change comparing with inks ac and the contact angle of ink d was the biggest of all due to the planar construction of fluorescent material with large conjugate degree. The green fluorescent material: 9, 10-bis (4-methoxyphenylethynyl) anthracene with 0.5% and crylic acid B817 with 12% formed the optimal formula. The printing quality of ink prepared by the optimal formula can accord with the demand of digital printing quality.


Anthracene-based fluorescent materials Fluorescent inkjet ink Photophysical properties Ink’s printability 



This study is funded by the Scientific Research Common Program of Beijing Municipal Commission of Education of China (Nos. KM201810015012, KM201810015003).


  1. 1.
    Hersch, R. D., Douzé, P., & Chosson S. (2007). Color images visible under UV light. In International Conference on Computer Graphics and Interactive Techniques, August 5, United states.Google Scholar
  2. 2.
    Rossier, R., &Hersch, R. D. (2011). Hiding patterns with daylight fluorescent inks. Switzerland: 19th Color Imaging Conference.Google Scholar
  3. 3.
    van Renesse, R. L. (2005). Printing inks and printing techniques. London: Optical Document Security.Google Scholar
  4. 4.
    Fatemeh, T., Farahnaz, N., & Saeed, B. (2014). Development of novel fluorescent offset ink based on coumarin dyes: Synthesis and properties. Progress in Organic Coatings, 77, 1351–1359.CrossRefGoogle Scholar
  5. 5.
    Coudray, M. A. (2004). Boosting process-color ink gamut with fluorescents. Screen Printing, 94(6), 28–32.Google Scholar
  6. 6.
    Lai, H. Y., Chen, T. H., & Chen, C. H. (2011). Optical and electrical properties of ink-jet printed indium–tin-oxide nanoparticle films. Materials Letters, 65, 3336–3339.CrossRefGoogle Scholar
  7. 7.
    Liu, H. M., Xu, W., Tan, W. Y., Zhu, X. H., Wang, J., Peng, J. B., & Cao, Y. (2016). Line printing solution-processable small molecules with uniform surface profile via ink-jet printer. Journal of Colloid and Interface Science, 465, 106–111.Google Scholar
  8. 8.
    Jafarifard, S., Bastani, S., Atasheh, S. G., & Morteza, G. S. (2016). The chemo-rheological behavior of an acrylic based UV-curable inkjetink: Effect of surface chemistry for hyperbranched polymers. Progress in Organic Coatings, 90, 399–406.CrossRefGoogle Scholar
  9. 9.
    Chang, C. J., Lin, Y. H., & Tsai, H. Y. (2011). Synthesis and properties of UV-curable hyperbranched polymers for ink-jet printing of color micropatterns on glass. Thin Solid Films, 519, 5243–5248.CrossRefGoogle Scholar
  10. 10.
    Park, J. Y., Hirata, Y. C., & Hamada, K. (2012). Relationship between the dye/additive interaction and inkjet ink droplet formation. Dyes and Pigments, 95, 502–511.CrossRefGoogle Scholar
  11. 11.
    Pan, Z. D., Wang, Y. M., Huang, H. N., Ling, Z. Y., Dai, Y. G., & Ke, S. J. (2015). Recent development on preparation of ceramic inks in ink-jet printing. Ceramics International, 41, 12515–12528.CrossRefGoogle Scholar
  12. 12.
    Karanikas, E. K., Nikolaidis, N. F., & Tsatsaroni, E. G. (2012). Novel digital printing ink-jet inks with “antifraud markers”used as additives. Progress in Organic Coatings, 75, 1–7.CrossRefGoogle Scholar
  13. 13.
    Stempien, Z., Rybicki, E., Rybicki, T., & Lesnikowski, J. (2016). Inkjet-printing deposition of silver electro-conductive layers on textile substrates at low sintering temperature by using an aqueous silver ions-containing ink for textronic applications. Sensors and Actuators B, 224, 714–725.CrossRefGoogle Scholar
  14. 14.
    Ahn, S., Kim, W. K., Ryu, S. H., Kim, K. J., Lee, S. E., Kim, S. H., et al. (2012). OLED with a controlled molecular weight of the PVK (poly(9-vinylcarbazole)) formed by a reactive ink-jet process. Organic Electronics, 13, 980–984.CrossRefGoogle Scholar
  15. 15.
    Peter, D., Rosanna, K., & Ramin, R. F. (2013). Synthesis and inkjet printing of aqueous ZnS: Mn nanoparticles. Journal of Luminescence, 136, 100–108.CrossRefGoogle Scholar
  16. 16.
    Cui, R. Z., Tang, Y. R., Ma, Y. Q., Yang, X. Y., Geng, L. H., & Li, Y. H. (2015). Research progress of investigation on organic blue-light-emitting materials and diodes. Chinese Journal of Applied Chemistry, 32(8), 855–872.Google Scholar
  17. 17.
    Lu, T. H., Huo, Y. P., Fang, X. M., & Ouyang, X. H. (2013). Progress of solution-processable organic small molecular for light emitting materials. Chinese Journal of Organic Chemistry, 33, 2063–2079.CrossRefGoogle Scholar
  18. 18.
    Kim, Y. D., Kim, J. P., Kwon, O. S., & Cho, I. H. (2009). The synthesis and application of thermally stable dyes for ink-jet printed LCD color filters. Dyes and Pigments, 81, 45–52.CrossRefGoogle Scholar
  19. 19.
    Maryam, A., & Farahnaz, N. (2015). Producing fluorescent digital printing ink: Investigating the effect of type and amount of coumarin derivative dyes on the quality of ink. Journal of Luminescence, 167, 254–260.CrossRefGoogle Scholar
  20. 20.
    Huang, B. Q, Zhang, W., & Wei, X. F. (2014). The preparation of red fluorescent inkjet ink Used in the additive method: ZL201210408556.5.Google Scholar
  21. 21.
    Wei, X. F, Zhang, & W., Huang, B. Q. (2014). The preparation of blue fluorescent inkjet ink Used in the additive method: ZL201210410173.1.Google Scholar
  22. 22.
    Ogi, D., Fujita, Y., Mori, S., Shirahata, T., & Misaki, Y. (2016). Bis- and tris-fused tetrathiafulvalenes extended with Anthracene-9,10-diylidene. Organic Letters, 18(22), 5868–5871.CrossRefGoogle Scholar
  23. 23.
    Peng, Z., Wang, Z., Tong, B., Ji, Y. C., Shi, J. B, Zhi, J. G., & Dong Y. P. (2016). Anthracene Modified by Aldehyde Groups Exhibiting Aggregation-Induced Emission Properties. Chinese Journal of Chemistry, 34(11), 1071-1075.Google Scholar
  24. 24.
    Zhang, W., Wang, Q., Feng, X., Yang, L., Wu, Y. K., & Wei, X. F. (2017). Anthracene-based derivatives: Synthesis, photophysical properties and electrochemical properties. Chemical Research in Chinese Universities, 33(4), 603–610.CrossRefGoogle Scholar
  25. 25.
    Miyaura, N., & Suzuki, A. (1995). Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chemical Reviews, 95(9), 2457–2483.CrossRefGoogle Scholar
  26. 26.
    Chinchilla, R., & Nájera, C. (2007). The sonogashira reaction: a booming methodology in synthetic organic chemistry. Chemical Reviews, 107(3), 874–922.CrossRefGoogle Scholar
  27. 27.
    Yang, L., Wei, X. F., & Huang, B. Q. (2014). The preparation of infrared fluorescent ink and the research of luminous performance. Printing technology, 1, 54–56.Google Scholar
  28. 28.
    Sara, P., Silva, M. D., Silva Lima, P., & Oliveira, J. M. (2016). Rheological behaviour of cork-polymer composites for injection moulding. Composites: Part B, 90, 172–178.CrossRefGoogle Scholar
  29. 29.
    Güngör, G. L., Kara, A., Gardini, D., Blosi, M., Dondi, M., & Zanelli, C. (2016). Ink-jet printability of aqueous ceramic inks for digital decoration of ceramic tiles. Dyes and Pigments, 127, 148–154.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Printing and Packaging EngineeringBeijing Institute of Graphic CommunicationBeijingChina
  2. 2.Beijing Zhong Biao Fang Yuan Anti-counterfeiting Technology Co. Ltd.BeijingChina

Personalised recommendations