Peyer’s Patch: Targeted Drug Delivery for Therapeutics Benefits

  • Rakesh P. PatelEmail author
  • Pranav Shah
  • Kalyani Barve
  • Nikunjana Patel
  • Jaimini Gandhi


Specialized microfold cells (M cells) within the follicle-associated endothelium of intestinal Peyer’s patches play a key role in body’s defence mechanism by endocytosing macromolecules. Particulate uptake by the Peyer’s patch offers a very attractive avenue for delivering drugs through the peroral route. This review describes the pathway of drug delivery by Peyer’s patch targeting and its associated advantages. Disorders affecting the function of the lymphatic and immune system can be treated by targeting the active moieties at the Peyer’s patch. Drugs have been delivered to the Peyer’s patch for autoimmune disorders like HIV/AIDS, rheumatoid arthritis, chronic inflammatory disorders, tuberculosis, psoriasis and cancer. Several drug delivery systems like nanoparticles, dendrimers, microspheres, SMEDDS and liposomes have been reviewed for oral lymphatic delivery of small-sized drugs as well as macromolecular drugs like vaccines for immunogenic response. Factors such as surface charge, size, hydrophobicity, surface modification and conjugation have been found to be important determinants in modulating the targeting of these drugs to Peyer’s patches. These novel drug carriers are particularly useful in improving the oral bioavailability and efficacy of the drugs by selective utilization of lymphatic absorption avoiding the portal circulation. Further research in the direction of elucidating the mechanisms of drug transport to the intestinal lymphatic system specifically the cellular and intracellular events may help in delivering a greater number of drugs through the Peyer’s patch.


Peyer’s patch Targeting Nanoparticles Dendrimers Microspheres Nano-/microemulsions SEDDS/SMEDDS Liposomes 


  1. 1.
    Florence AT, Hillery AM, Hussain N, Jani PU (1995) Nanoparticles as carriers for oral peptide absorption: studies on particle uptake and fate. J Control Release 36(1–2):39–46CrossRefGoogle Scholar
  2. 2.
    Koteswari P, Devia KV, Nagabhushanama MV, Nazmaa S (2017) A systematic review on advanced drug delivery technologies to target the lymphatic systems. Int J Pharm Sci Rev Res 43(1):7–11Google Scholar
  3. 3.
    Brayden DJ, Jepson MA, Baird AW (2005) Keynote review: intestinal Peyer’s patch M cells and oral vaccine targeting. Drug Discov Today 10(17):1145–1157PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Azizi A, Kumar A, Diaz-Mitoma F, Mestecky J (2010) Enhancing oral vaccine potency by targeting intestinal M cells. PLoS Pathog 6(11):e1001147PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Managuli RS, Raut SY, Reddy MS, Mutalik SJ (2018) Targeting the intestinal lymphatic system: a versatile path for enhanced oral bioavailability of drugs. Expert Opin Drug Deliv 15(8):787–804PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Garinot M, Fiévez V, Pourcelle V, Stoffelbach F, des Rieux A, Plapied L et al (2007) PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J Control Release 120(3):195–204PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Shakweh M, Ponchel G, Fattal E (2004) Particle uptake by Peyer’s patches: a pathway for drug and vaccine delivery. Expert Opin Drug Deliv 1(1):141–163PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Nelson AG, Zhang X, Ganapathi U, Szekely Z, Flexner CW, Owen A et al (2015) Drug delivery strategies and systems for HIV/AIDS pre-exposure prophylaxis and treatment. J Control Release 219:669–680PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Lackner AA, Mohan M, Veazey RS (2009) The gastrointestinal tract and AIDS pathogenesis. Gastroenterology 136(6):1966–1978CrossRefGoogle Scholar
  10. 10.
    Min SY, Park KS, Cho ML, Kang JW, Cho YG, Hwang SY et al (2006) Antigen-induced, tolerogenic CD11c+, CD11b+ dendritic cells are abundant in Peyer’s patches during the induction of oral tolerance to type II collagen and suppress experimental collagen-induced arthritis. Arthritis Rheum 54(3):887–898PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Zhou J, Xiao C, Zhao L, Jia H, Zhao N, Lu C et al (2006) The effect of triptolide on CD4+ and CD8+ cells in Peyer’s patch of SD rats with collagen induced arthritis. Int Immunopharmacol 6(2):198–203PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Hosoda T, Mito N, Yoshino H, Sato K (2004) Estrogen altered oral tolerance induction in type II collagen-induced murine arthritis. Int Arch Allergy Immunol 133(1):19–28PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Kapur S, Watson W, Carr S (2018) Atopic dermatitis. Allergy Asthma Clin Immunol 14(Suppl 2):52PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Lugton I (1999) Mucosa-associated lymphoid tissues as sites for uptake, carriage and excretion of tubercle bacilli and other pathogenic mycobacteria. Immunol Cell Biol 77(4):364–372PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Coppi G, Iannuccelli V (2009) Alginate/chitosan microparticles for tamoxifen delivery to the lymphatic system. Int J Pharm 367(1–2):127–132PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Bachhav SS, Dighe VD, Kotak D, Devarajan PV (2017) Rifampicin Lipid-Polymer hybrid nanoparticles (LIPOMER) for enhanced Peyer’s patch uptake. Int J Pharm 532(1):612–622PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Prajapati JB, Katariya H, Patel R (2018) Peyer’s patch targeting of Isradipine loaded solid lipid nanoparticles: it’s cellular uptake study. J Drug Deliv Sci Technol 43:318–326CrossRefGoogle Scholar
  18. 18.
    Shah U, Joshi G, Sawant K (2014) Improvement in antihypertensive and antianginal effects of felodipine by enhanced absorption from PLGA nanoparticles optimized by factorial design. Mater Sci Eng C 35:153–163CrossRefGoogle Scholar
  19. 19.
    Prajapati JB, Verma SD, Patel AA (2018) Oral bioavailability enhancement of agomelatine by loading into nanostructured lipid carriers: peyer’s patch targeting approach. Int J Nanomedicine 13:35PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Shi L-L, Xie H, Lu J, Cao Y, Liu J-Y, Zhang X-X et al (2016) Positively charged surface-modified solid lipid nanoparticles promote the intestinal transport of docetaxel through multifunctional mechanisms in rats. Mol Pharm 13(8):2667–2676PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Su C-W, Chiang M-Y, Lin Y-L, Tsai N-M, Chen Y-P, Li W-M et al (2016) Sodium dodecyl sulfate-modified doxorubicin-loaded chitosan-lipid nanocarrier with multi polysaccharide-lecithin nanoarchitecture for augmented bioavailability and stability of oral administration in vitro and in vivo. J Biomed Nanotechnol 12(5):962–972PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Parayath NN, Nehoff H, Müller P, Taurin S, Greish K (2015) Styrene maleic acid micelles as a nanocarrier system for oral anticancer drug delivery–dual uptake through enterocytes and M-cells. Int J Nanomedicine 10:4653PubMedPubMedCentralGoogle Scholar
  23. 23.
    Singh G, Pai RS (2014) Optimized PLGA nanoparticle platform for orally dosed trans-resveratrol with enhanced bioavailability potential. Expert Opin Drug Deliv 11(5):647–659PubMedCrossRefGoogle Scholar
  24. 24.
    Wong CY, Al-Salami H, Dass CR (2017) Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J Control Release 264:247–275PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Nair AB, Kaushik A, Attimarad M, Al-Dhubiab BE (2012) Enhanced oral bioavailability of calcium using bovine serum albumin microspheres. Drug Deliv 19(6):277–285PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Joshi G, Kumar A, Sawant K (2016) Bioavailability enhancement, Caco-2 cells uptake and intestinal transport of orally administered lopinavir-loaded PLGA nanoparticles. Drug Deliv 23(9):3492–3504PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Singh G, Pai RS (2016) Atazanavir-loaded Eudragit RL 100 nanoparticles to improve oral bioavailability: optimization and in vitro/in vivo appraisal. Drug Deliv 23(2):532–539PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Shukla A, Mishra V, Bhoop BS, Katare OP (2015) Alginate coated chitosan microparticles mediated oral delivery of diphtheria toxoid.(Part A). Systematic optimization, development and characterization. Int J Pharm 495(1):220–233PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Kaur M, Malik B, Garg T, Rath G, Goyal AK (2015) Development and characterization of guar gum nanoparticles for oral immunization against tuberculosis. Drug Deliv 22(3):328–334PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Yeboah KG, Akande J, Addo RT, Siwale RC, Aninkorah-Yeboah K, Siddig A (2014) In vitro and ex vivo characterization of lectin-labelled Mycobacterium tuberculosis antigen-containing microspheres for enhanced oral delivery. J Drug Target 22(1):34–47PubMedCrossRefGoogle Scholar
  31. 31.
    Liu Z, Lv D, Liu S, Gong J, Wang D, Xiong M et al (2013) Alginic acid-coated chitosan nanoparticles loaded with legumain DNA vaccine: effect against breast cancer in mice. PLoS One 8(4):e60190PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Tawde SA, Chablani L, Akalkotkar A, D’Souza C, Chiriva-Internati M, Selvaraj P et al (2012) Formulation and evaluation of oral microparticulate ovarian cancer vaccines. Vaccine 30(38):5675–5681PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Akalkotkar A, Tawde SA, Chablani L, D’Souza MJ (2012) Oral delivery of particulate prostate cancer vaccine: in vitro and in vivo evaluation. J Drug Target 20(4):338–346PubMedCrossRefGoogle Scholar
  34. 34.
    D’Souza B, Bhowmik T, Shashidharamurthy R, Oettinger C, Selvaraj P, D’Souza M (2012) Oral microparticulate vaccine for melanoma using M-cell targeting. J Drug Target 20(2):166–173PubMedCrossRefGoogle Scholar
  35. 35.
    Xiang R, Mizutani N, Luo Y, Chiodoni C, Zhou H, Mizutani M et al (2005) A DNA vaccine targeting survivin combines apoptosis with suppression of angiogenesis in lung tumor eradication. Cancer Res 65(2):553–561PubMedGoogle Scholar
  36. 36.
    Banerjee A, Qi J, Gogoi R, Wong J, Mitragotri S (2016) Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J Control Release 238:176–185PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Iannuccelli V, Montanari M, Bertelli D, Pellati F, Coppi G (2011) Microparticulate polyelectrolyte complexes for gentamicin transport across intestinal epithelia. Drug Deliv 18(1):26–37PubMedCrossRefGoogle Scholar
  38. 38.
    Huang X, Xiao Y, Lang M (2012) Micelles/sodium-alginate composite gel beads: a new matrix for oral drug delivery of indomethacin. Carbohydr Polym 87(1):790–798CrossRefGoogle Scholar
  39. 39.
    Momin M, Pundarikakshudu K, Nagori S (2008) Design and development of mixed film of pectin: ethyl cellulose for colon specific drug delivery of sennosides and triphala. Indian J Pharm Sci 70(3):338PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kalgaonkar S, Lönnerdal B (2009) Receptor-mediated uptake of ferritin-bound iron by human intestinal Caco-2 cells. J Nutr Biochem 20(4):304–311PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Seifert J, Sass W (1990) Intestinal absorption of macromolecules and small particles. Dig Dis 8(3):169–178PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Sass W, Dreyer H-P, Seifert JJAJoG (1990) Rapid insorption of small particles in the gut. Am J Gastroenterol 85(3):255–260PubMedGoogle Scholar
  43. 43.
    Seifert J, Haraszti B, Sass W (1996) The influence of age and particle number on absorption of polystyrene particles from the rat gut. J Anat 189(Pt 3):483PubMedPubMedCentralGoogle Scholar
  44. 44.
    Gebert A, Rothkötter H-J, Pabst R (1996) M cells in Peyer’s patches of the intestine. Int Rev Cytol Elsevier 167:91–159CrossRefGoogle Scholar
  45. 45.
    Beier R, Gebert A (1998) Kinetics of particle uptake in the domes of Peyer’s patches. Am J Physiol Gastrointest Liver Physiol 275(1):G130–G1G7CrossRefGoogle Scholar
  46. 46.
    Böckmann J, Lahl H, Eckert T, Unterhalt B (2000) Blood titanium levels before and after oral administration titanium dioxide. Pharmazie 55(2):140–143PubMedGoogle Scholar
  47. 47.
    Volkheimer G (1974) Passage of particles through the wall of the gastrointestinal tract. Environ Health Perspect 9:215PubMedPubMedCentralGoogle Scholar
  48. 48.
    Volkheimer G (1993) Persorption of microparticles. Pathologe 14(5):247e52Google Scholar
  49. 49.
    Powell J, Whitehead M, Lee S, Thompson R (1994) Mechanisms of gastrointestinal absorption: dietary minerals and the influence of beverage ingestion. Food Chem 51(4):381–388CrossRefGoogle Scholar
  50. 50.
    Powell JJ, Faria N, Thomas-McKay E, Pele LC (2010) Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun 34(3):J226–JJ33PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    des Rieux A, Ragnarsson EG, Gullberg E, Préat V, Schneider Y-J, Artursson P (2005) Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. Eur J Pharm Sci 25(4–5):455–465PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Desai MP, Labhasetwar V, Amidon GL, Levy RJ (1996) Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 13(12):1838–1845PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Jung TK, Breitenbach W, Hungerer A, Hundt K-D, Kissel E (2001) Thomas Tetanus toxoid loaded nanoparticles from sulfobutylated poly (vinyl alcohol)-graft-poly (lactide-co-glycolide): evaluation of antibody response after oral and nasal application in mice. Pharm Res 18(3):352–360PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    McClean S, Prosser E, Meehan E, O’Malley D, Clarke N, Ramtoola Z et al (1998) Binding and uptake of biodegradable poly-DL-lactide micro-and nanoparticles in intestinal epithelia. Eur J Pharm Sci 6(2):153–163PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Prego C, Garcia M, Torres D, Alonso M (2005) Transmucosal macromolecular drug delivery. J Control Release 101(1–3):151–162PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Thanou M, Verhoef J, Junginger H (2001) Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev 52(2):117–126PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Mourya VK, Inamdar NN (2009) Trimethyl chitosan and its applications in drug delivery. J Mater Sci Mater Med 20:1057–1079PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Beloqui A, des Rieux A, Préat V (2016) Mechanisms of transport of polymeric and lipidic nanoparticles across the intestinal barrier. Adv Drug Deliv Rev 106:242–255PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Lopes MA, Abrahim BA, Cabral LM, Rodrigues CR, Seiça RMF, de Baptista Veiga FJ et al (2014) Intestinal absorption of insulin nanoparticles: contribution of M cells. Nanomed Nanotechnol Biol Med 10(6):1139–1151CrossRefGoogle Scholar
  60. 60.
    Lai SK, Wang Y-Y, Hanes J (2009) Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 61(2):158–171PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Neutra MR (1998) V. Role of M cells in transepithelial transport of antigens and pathogens to the mucosal immune system. Am J Physiol Gastrointest Liver Physiol 274(5):G785–GG91CrossRefGoogle Scholar
  62. 62.
    Pohlmeyer I, Jörns J, Schumacher U, Van Damme E, Peumans W, Pfüller U et al (2005) Lectin histochemical investigations of the distal gut of chicks with special emphasis on the follicle-associated epithelium. J Veterinary Med Ser A 52(3):138–146CrossRefGoogle Scholar
  63. 63.
    Hathaway L, Kraehenbuhl J-P (2000) The role of M cells in mucosal immunity. Cell Mol Life Sci 57(2):323–332PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Clark MA, Hirst BH, Jepson MA (2000) Lectin-mediated mucosal delivery of drugs and microparticles. Adv Drug Deliv Rev 43(2–3):207–223PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Jepson MA, Clark M, Foster N, Mason CM, Bennett M, Simmons N et al (1996) Targeting to intestinal M cells. J Anat 189(Pt 3):507PubMedPubMedCentralGoogle Scholar
  66. 66.
    Jepson MA, Mason CM, Clark MA, Simmons NL, Hirst BH (1995) Variations in lectin binding properties of intestinal M cells. J Drug Target 3(1):75–77PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Clark M, Jepson MA, Simmons NL, Booth TA, Hirst BH (1993) Differential expression of lectin-binding sites defines mouse intestinal M-cells. J Histochem Cytochem 41(11):1679–1687PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Giannasca PJ, Giannasca KT, Falk P, Gordon JI, Neutra MR (1994) Regional differences in glycoconjugates of intestinal M cells in mice: potential targets for mucosal vaccines. Am J Physiol Gastrointest Liver Physiol 267(6):G1108–G1G21CrossRefGoogle Scholar
  69. 69.
    Gebert A, Posselt W (1997) Glycoconjugate expression defines the origin and differentiation pathway of intestinal M-cells. J Histochem Cytochem 45(10):1341–1350PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Giannasca PJ, Giannasca KT, Leichtner AM, Neutra MR (1999) Human intestinal M cells display the sialyl Lewis A antigen. Infect Immun 67(2):946–953PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Mantis NJ, Cheung MC, Chintalacharuvu KR, Rey J, Corthésy B, Neutra MR (2002) Selective adherence of IgA to murine Peyer’s patch M cells: evidence for a novel IgA receptor. J Immunol 169(4):1844–1851PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Yoo M-K, Kang S-K, Choi J-H, Park I-K, Na H-S, Lee H-C et al (2010) Targeted delivery of chitosan nanoparticles to Peyer’s patch using M cell-homing peptide selected by phage display technique. Biomaterials 31(30):7738–7747PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Tekade RK, Kumar PV, Jain NK (2008) Dendrimers in oncology: an expanding horizon. Chem Rev 109(1):49–87CrossRefGoogle Scholar
  74. 74.
    Svenson S (2009) Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 71(3):445–462PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Dufes C, Uchegbu IF, Schätzlein AG (2005) Dendrimers in gene delivery. Adv Drug Deliv Rev 57(15):2177–2202PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Joshi N, Grinstaff M (2008) Applications of dendrimers in tissue engineering. Curr Top Med Chem 8(14):1225–1236PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Kobayashi H, Brechbiel MW (2004) Dendrimer-based nanosized MRI contrast agents. Curr Pharm Biotechnol 5(6):539–549PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Sakthivel T, Toth I, Florence AT (1999) Distribution of a lipidic 2.5 nm diameter dendrimer carrier after oral administration. Int J Pharm 183(1):51–55PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Wiwattanapatapee R, Carreño-Gómez B, Malik N, Duncan R (2000) Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system? Pharm Res 17(8):991–998PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Florence A, Sakthivel T, Toth I (2000) Oral uptake and translocation of a polylysine dendrimer with a lipid surface. J Control Release 65(1–2):253–259PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Pantzar N, Lundin S, Wester L, Weström B (1994) Bidirectional small-intestinal permeability in the rat to some common marker molecules in vitro. Scand J Gastroenterol 29(8):703–709PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Kaminskas LM, Boyd BJ, Porter CJ (2011) Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomedicine 6(6):1063–1084PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    D’emanuele A, Jevprasesphant R, Penny J, Attwood D (2004) The use of a dendrimer-propranolol prodrug to bypass efflux transporters and enhance oral bioavailability. J Control Release 95(3):447–453PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Pisal DS, Yellepeddi VK, Kumar A, Kaushik RS, Hildreth MB, Guan X et al (2008) Permeability of surface-modified polyamidoamine (PAMAM) dendrimers across Caco-2 cell monolayers. Int J Pharm 350(1–2):113–121PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Misumi S, Masuyama M, Takamune N, Nakayama D, Mitsumata R, Matsumoto H et al (2009) Targeted delivery of immunogen to primate m cells with tetragalloyl lysine dendrimer. J Immunol 182(10):6061–6070PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Jyothi VGB, Sireesha C, Manikiran SS, Ramarao N (2017) Microsphere as a novel drug delivery – a review. World J Pharm Res 6(6):378–396CrossRefGoogle Scholar
  87. 87.
    Singh M, Hemant K, Ram M, Shivakumar H (2010) Microencapsulation: a promising technique for controlled drug delivery. Res Pharm Sci 5(2):65PubMedPubMedCentralGoogle Scholar
  88. 88.
    Jani P, McCarthy D, Florence A (1992) Nanosphere and microsphere uptake via Peyer’s patches: observation of the rate of uptake in the rat after a single oral dose. Int J Pharm 86(2–3):239–246CrossRefGoogle Scholar
  89. 89.
    Jung C, Hugot J-P, Barreau F (2010) Peyer’s patches: the immune sensors of the intestine. Int J Inflamm 2010:823710CrossRefGoogle Scholar
  90. 90.
    Eldridge JH, Meulbroek JA, Staas JK, Tice TR, Gilley RM (1989) Vaccine-containing biodegradable microspheres specifically enter the gut-associated lymphoid tissue following oral administration and induce a disseminated mucosal immune response. In: Immunobiology of proteins and peptides V. Springer, Boston, pp 191–202CrossRefGoogle Scholar
  91. 91.
    Eldridge JH, Hammond CJ, Meulbroek JA, Staas JK, Gilley RM, Tice TR (1990) Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the Peyer’s patches. J Control Release 11(1–3):205–214CrossRefGoogle Scholar
  92. 92.
    Jenkins P, Howard K, Blackhall N, Thomas N, Davis S, O’Hagan D (1994) The quantitation of the absorption of microparticles into the intestinal lymph of Wistar rats. Int J Pharm 102(1–3):261–266CrossRefGoogle Scholar
  93. 93.
    Jani P, Halbert G, Langridge J, Florence A (1989) The uptake and translocation of latex nanospheres and microspheres after oral administration to rats. J Pharm Pharmacol 41(12):809–812PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    LeFevre M, Olivo R, Vanderhoff J, Joel D (1978) Accumulation of latex in Peyer’s patches and its subsequent appearance in villi and mesenteric lymph nodes. Proc Soc Exp Biol Med 159(2):298–302PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    LeFevre M, Boccio A, Joel D (1989) Intestinal uptake of fluorescent microspheres in young and aged mice. Proc Soc Exp Biol Med 190(1):23–27PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Keljo DJ, Hamilton JR (1983) Quantitative determination of macromolecular transport rate across intestinal Peyer’s patches. Am J Physiol Gastrointest Liver Physiol 244(6):G637–GG44CrossRefGoogle Scholar
  97. 97.
    New R, Littlewood G, Guard P, Browning I, Hotten P (1997) Intestinal delivery of calcitonin in pig. Int J Pharm 156(1):1–8CrossRefGoogle Scholar
  98. 98.
    Chen Y, Li G, Huang J, Wang R, Liu H, Tang R (2009) Comparison of self-microemulsifying drug delivery system versus solid dispersion technology used in the improvement of dissolution rate and bioavailability of vinpocetine. Yao xue xue bao/Acta Pharm Sin 44(6):658–666Google Scholar
  99. 99.
    Mundada VP, Sawant KK (2018) Enhanced oral bioavailability and anticoagulant activity of dabigatran etexilate by self-micro emulsifying drug delivery system: systematic development, In vitro, Ex vivo and In vivo Evaluation. J Nanomed Nanotechnol 9(1):1–13CrossRefGoogle Scholar
  100. 100.
    Li F, Hu R, Wang B, Gui Y, Cheng G, Gao S et al (2017) Self-microemulsifying drug delivery system for improving the bioavailability of huperzine A by lymphatic uptake. Acta Pharm Sin B 7(3):353–360PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Sun M, Zhai X, Xue K, Hu L, Yang X, Li G et al (2011) Intestinal absorption and intestinal lymphatic transport of sirolimus from self-microemulsifying drug delivery systems assessed using the single-pass intestinal perfusion (SPIP) technique and a chylomicron flow blocking approach: linear correlation with oral bioavailabilities in rats. Eur J Pharm Sci 43(3):132–140PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Bhalekar MR, Pokale R, Bandivadekar M, Madgukar A, Nagore P (2016) Self micro-emulsifying drug delivery system for lymphatic uptake of Darunavir. J Drug Discov Dev Deliv 3(2):1–7Google Scholar
  103. 103.
    Cho H, Jun-Hyuk K, Ngo L, Tran P, Lee Y (2016) Preparation and evaluation of solid-self-emulsifying drug delivery system containing paclitaxel for lymphatic delivery. J Nanomater 2016:1–14Google Scholar
  104. 104.
    Holm R, Porter CJ, Edwards GA, Müllertz A, Kristensen HG, Charman WN (2003) Examination of oral absorption and lymphatic transport of halofantrine in a triple-cannulated canine model after administration in self-microemulsifying drug delivery systems (SMEDDS) containing structured triglycerides. Eur J Pharm Sci 20(1):91–97PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Kiyasu J, Bloom B, Chaikoff I (1952) The portal transport of absorbed fatty acids. J Biol Chem 199(1):415–419PubMedPubMedCentralGoogle Scholar
  106. 106.
    Prasad YR, Puthli S, Eaimtrakarn S, Ishida M, Yoshikawa Y, Shibata N et al (2003) Enhanced intestinal absorption of vancomycin with Labrasol and D-α-tocopheryl PEG 1000 succinate in rats. Int J Pharm 250(1):181–190PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Wilkhu JS, McNeil SE, Anderson DE, Perrie Y (2014) Consideration of the efficacy of non-ionic vesicles in the targeted delivery of oral vaccines. Drug Deliv Transl Res 4(3):233–245PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Simão AMS, Bolean M, Cury TAC, Stabeli RG, Itri R, Ciancaglini P (2015) Liposomal systems as carriers for bioactive compounds. Biophys Rev 7(4):391–397PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Ling SS, Magosso E, Khan NA et al (2008) Enhanced oral bioavailability and intestinal lymphatic transport of a hydrophilic drug using liposomes. Drug Dev Ind Pharm 32(3):335–345CrossRefGoogle Scholar
  110. 110.
    Tiantian Y, Wenji Z, Mingshuang S, Rui Y, Shuangshuang S, Yuling M et al (2014) Study on intralymphatic-targeted hyaluronic acid-modified nanoliposome: influence of formulation factors on the lymphatic targeting. Int J Pharm 471(1–2):245–257PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Kaur CD, Nahar M, Jain NK (2008) Lymphatic targeting of zidovudine using surface-engineered liposomes. J Drug Target 16(10):798–805PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Hirano K, Hunt CA, Strubbe A, MacGregor RD (1985) Lymphatic transport of liposome-encapsulated drugs following intraperitoneal administration–effect of lipid composition. Pharm Res 2(6):271–278PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Parker R, Sieber S, Weinstein J (1981) Effect of liposome encapsulation of a fluorescent dye on its uptake by the lymphatics of the rat. Pharmacology 23(3):128–136PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Parker R, Priester E, Sieber S (1982) Comparison of lymphatic uptake, metabolism, excretion, and biodistribution of free and liposome-entrapped [14C] cytosine beta-D-arabinofuranoside following intraperitoneal administration to rats. Drug Metab Dispos 10(1):40–46PubMedPubMedCentralGoogle Scholar
  115. 115.
    Parker RJ, Hartman KD, Sieber SM (1981) Lymphatic absorption and tissue disposition of liposome-entrapped [14C] adriamycin following intraperitoneal administration to rats. Cancer Res 41(4):1311–1317PubMedPubMedCentralGoogle Scholar
  116. 116.
    Jackson A (1981) Intramuscular absorption and regional lymphatic uptake of liposome-entrapped inulin. Drug Metab Dispos 9(6):535–540PubMedPubMedCentralGoogle Scholar
  117. 117.
    Kaledin VI, Matienko NA, Nikolin VP, Gruntenko YV, Budker VG (1981) Intralymphatic administration of liposome-encapsulated drugs to mice: possibility for suppression of the growth of tumor metastases in the lymph nodes. J Natl Cancer Inst 66(5):881–887PubMedPubMedCentralGoogle Scholar
  118. 118.
    Kaledin VI, Matienko NA, Nikolin VP, Gruntenko YV, Budker VG, Vakhrusheva TE (1982) Subcutaneously injected radiolabeled liposomes: transport to the lymph nodes in mice. J Natl Cancer Inst 69(1):67–71PubMedPubMedCentralGoogle Scholar
  119. 119.
    Khato J, Del Campo A, Sieber S (1983) Carrier activity of sonicated small liposomes containing melphalan to regional lymph nodes of rats. Pharmacology 26(4):230–240PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Visani G, Isidori A (2009) Nonpegylated liposomal doxorubicin in the treatment of B-cell non-Hodgkin’s lymphoma. Expert Rev Anticancer Ther 9:357–363PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Pukanud P, Peungvicha P, Sarisuta N (2009) Development of mannosylated liposomes for bioadhesive oral drug delivery via M cells of Peyer’s patches. Drug Deliv 16(5):289–294PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Rakesh P. Patel
    • 1
    Email author
  • Pranav Shah
    • 2
  • Kalyani Barve
    • 3
  • Nikunjana Patel
    • 4
  • Jaimini Gandhi
    • 2
  1. 1.Pharmaceutics & Pharmaceutical Technology Department, Shree S. K. Patel College of Pharmaceutical Education & ResearchGanpat UniversityMahesanaIndia
  2. 2.Department of Pharmaceutics, Maliba Pharmacy CollegeUkaTarsadia UniversityBardoliIndia
  3. 3.Department of PharmacologyShobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMSMumbaiIndia
  4. 4.Department of Pharmacognosy, Shree S. K. Patel College of Pharmaceutical Education & ResearchGanpat UniversityMehsanaIndia

Personalised recommendations