Advertisement

Buccal and Intraoral Drug Delivery: Potential Alternative to Conventional Therapy

  • Bazigha K. Abdul RasoolEmail author
  • Aliasgar Shahiwala
Chapter
  • 41 Downloads

Abstract

Repositioning an old drug through intraoral drug delivery system benefits the pharmaceutical manufacturer by imparting unique product differentiation and enabling its use as line extensions for existing commercial products. Although the needs for these systems are real, and many classes of drugs could benefit from intraoral drug delivery, turbulent and changing nature of the oral cavity, less surface area, and contact time pose significant formulation challenges. This chapter discusses all these challenges and different approaches that can be adopted in formulating an intraoral dosage form. This chapter further provides details of approved marketed products, products that have recently completed or in ongoing clinical trials, and regulatory requirements for bioequivalence for intraoral dosage forms.

Keywords

Intraoral Buccal Drug delivery Bioavailability Proteins Mucoadhesive 

References

  1. 1.
    Squier C, Wertz P (1996) Structure and function of the oral mucosa and implications for drug delivery. In: Rathbone M (ed) Oral mucosal drug delivery. Marcel Dekker, New York, pp 1–25Google Scholar
  2. 2.
    Singh S, Jain S, Muthu MS, Tiwari S, Tilak R (2008) Preparation and evaluation of buccal bioadhesive films containing Clotrimazole. AAPS PharmSciTech 9(2):660–667.  https://doi.org/10.1208/s12249-008-9083-3CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Harris D, Robinson JR (1992) Drug delivery via the mucous membranes of the oral cavity. J Pharm Sci 81(1):1–10. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1619560CrossRefGoogle Scholar
  4. 4.
    Galey WR, Lonsdale HK, Nacht S (1976) The in vitro permeability of skin and buccal mucosa to selected drugs and tritiated water. J Invest Dermatol 67(6):713–7. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1033956CrossRefGoogle Scholar
  5. 5.
    Squier CA, Hall BK (1984) The permeability of mammalian nonkeratinized oral epithelia to horseradish peroxidase applied in vivo and in vitro. Arch Oral Biol 29(1):45–50. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6197962CrossRefGoogle Scholar
  6. 6.
    Edgar WM (1992) Saliva: its secretion, composition and functions. Br Dent J 172(8):305–12. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1591115CrossRefGoogle Scholar
  7. 7.
    Sreebny LM, Valdini A (1987) Xerostomia. A neglected symptom. Arch Intern Med 147(7):1333–1337. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3300589CrossRefGoogle Scholar
  8. 8.
    Shojaei AH (1998) Buccal mucosa as a route for systemic drug delivery: a review. J Pharm Pharm Sci 1(1):15–30. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10942969
  9. 9.
    Humphrey SP, Williamson RT (2001) A review of saliva: normal composition, flow, and function. J Prosthet Dent 85(2):162–169.  https://doi.org/10.1067/mpr.2001.113778CrossRefPubMedGoogle Scholar
  10. 10.
    Robinson J, Yang X (1988) Absorption enhancers. In: Swarbrick J, Boylan JC (eds) Encyclopedia of pharmaceutical technology, 2nd edn. M. Dekker, New York, pp 1–27Google Scholar
  11. 11.
    Walker GF, Langoth N, Bernkop-Schnürch A (2002) Peptidase activity on the surface of the porcine buccal mucosa. Int J Pharm 233(1–2):141–147. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11897418CrossRefGoogle Scholar
  12. 12.
    Yamahara H, Lee VHL (1993) Drug metabolism in the oral cavity. Adv Drug Deliv Rev 12(1–2):25–39.  https://doi.org/10.1016/0169-409X(93)90039-7CrossRefGoogle Scholar
  13. 13.
    Tabak LA, Levine MJ, Mandel ID, Ellison SA (1982) Role of salivary mucins in the protection of the oral cavity. J Oral Pathol 11(1):1–17. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6801238CrossRefGoogle Scholar
  14. 14.
    Creeth JM (1978) Constituents of mucus and their separation. Br Med Bull 34(1):17–24. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/342044CrossRefGoogle Scholar
  15. 15.
    Bansil R, Turner BS (2018) The biology of mucus: composition, synthesis and organization. Adv Drug Deliv Rev 124:3–15.  https://doi.org/10.1016/j.addr.2017.09.023CrossRefPubMedGoogle Scholar
  16. 16.
    Boegh M, Nielsen HM (2015) Mucus as a barrier to drug delivery – understanding and mimicking the barrier properties. Basic Clin Pharmacol Toxicol 116(3):179–186.  https://doi.org/10.1111/bcpt.12342CrossRefGoogle Scholar
  17. 17.
    Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S (1980) Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284(5751):67–68.  https://doi.org/10.1038/284067a0CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Janet Hoogstraate A, Boddé HE (1993) Methods for assessing the buccal mucosa as a route of drug delivery. Adv Drug Deliv Rev 12(1–2):99–125.  https://doi.org/10.1016/0169-409X(93)90042-3CrossRefGoogle Scholar
  19. 19.
    Senel S, Kremer M, Nagy K, Squier C (2001) Delivery of bioactive peptides and proteins across oral (buccal) mucosa. Curr Pharm Biotechnol 2(2):175–186. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11480421CrossRefGoogle Scholar
  20. 20.
    Duan JZ (2016) Pharmacokinetics of oral absorption. In: Shargel L, Yu ABC (eds) Applied biopharmaceutics and pharmacokinetics, 7th edn. McGraw-Hill Education, New YorkGoogle Scholar
  21. 21.
    Dearden JC, Tomlinson E (1971) A new buccal absorption model. J Pharm Pharmacol 23(S1):68S–72S. https://doi.org/10.1111/j.2042-7158.1971.tb08771
  22. 22.
    Salamat-Miller N, Chittchang M, Johnston T (2005) The use of mucoadhesive polymers in buccal drug delivery. Adv Drug Deliv Rev 57(11):1666–1691.  https://doi.org/10.1016/j.addr.2005.07.003CrossRefPubMedGoogle Scholar
  23. 23.
    Shojaei AH, Chang RK, Guo X, Burnside BA, Couch RA (2001) Pharmaceutical technology. Retrieved from www.pharmaportal.com
  24. 24.
    Duggan S, Cummins W, O’ Donovan O, Hughes H, Owens E (2017) Thiolated polymers as mucoadhesive drug delivery systems. Eur J Pharm Sci 100:64–78.  https://doi.org/10.1016/j.ejps.2017.01.008CrossRefPubMedGoogle Scholar
  25. 25.
    Iyire A, Alaayedi M, Mohammed AR (2016) Pre-formulation and systematic evaluation of amino acid assisted permeability of insulin across in vitro buccal cell layers. Sci Rep 6(1):32498.  https://doi.org/10.1038/srep32498CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Nicolazzo JA, Reed BL, Finnin BC (2005) Buccal penetration enhancers—how do they really work? J Control Release 105(1–2):1–15.  https://doi.org/10.1016/j.jconrel.2005.01.024CrossRefPubMedGoogle Scholar
  27. 27.
    Palem CR, Kumar Battu S, Gannu R, Yamsani VV, Repka MA, Yamsani MR (2012) Role of cyclodextrin complexation in felodipine-sustained release matrix tablets intended for oral transmucosal delivery: in vitro and ex vivo characterization. Pharm Dev Technol 17(3):321–332.  https://doi.org/10.3109/10837450.2010.535829CrossRefPubMedGoogle Scholar
  28. 28.
    Wasnik MN, Godse RD, Nair HA (2014) Development and evaluation of buccoadhesive tablet for selegiline hydrochloride based on thiolated polycarbophil. Drug Dev Ind Pharm 40(5):632–638.  https://doi.org/10.3109/03639045.2014.884124CrossRefPubMedGoogle Scholar
  29. 29.
    Prasanth VV, Puratchikody A, Mathew ST, Ashok KB (2014) Effect of permeation enhancers in the mucoadhesive buccal patches of salbutamol sulphate for unidirectional buccal drug delivery. Res Pharm Sci 9(4):259–268. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25657797
  30. 30.
    Ojewole E, Kalhapure R, Akamanchi K, Govender T (2014) Novel oleic acid derivatives enhance buccal permeation of didanosine. Drug Dev Ind Pharm 40(5):657–668.  https://doi.org/10.3109/03639045.2014.892958CrossRefPubMedGoogle Scholar
  31. 31.
    Kurosaki Y, Hisaichi S, Nakayama T, Kimura T (1989) Enhancing effect of 1-dodecylazacycloheptan-2-one (Azone) on the absorption of salicylic acid from keratinized oral mucosa and the duration of enhancement in vivo. Int J Pharm 51(1):47–54.  https://doi.org/10.1016/0378-5173(89)90073-2CrossRefGoogle Scholar
  32. 32.
    Di Prima G, Conigliaro A, De Caro V (2019) Mucoadhesive polymeric films to enhance Barbaloin penetration into buccal mucosa: a novel approach to chemoprevention. AAPS PharmSciTech 20(1):18.  https://doi.org/10.1208/s12249-018-1202-1CrossRefPubMedGoogle Scholar
  33. 33.
    Jain CP, Joshi G, Kataria U, Patel K (2016) Enhanced permeation of an antiemetic drug from buccoadhesive tablets by using bile salts as permeation enhancers: formulation characterization, in vitro, and ex vivo studies. Sci Pharm 84(2):379–392.  https://doi.org/10.3797/scipharm.1505-15CrossRefPubMedGoogle Scholar
  34. 34.
    Hansen SE, Marxen E, Janfelt C, Jacobsen J (2018) Buccal delivery of small molecules – impact of levulinic acid, oleic acid, sodium dodecyl sulfate and hypotonicity on ex vivo permeability and spatial distribution in mucosa. Eur J Pharm Biopharm 133:250–257.  https://doi.org/10.1016/j.ejpb.2018.10.016CrossRefPubMedGoogle Scholar
  35. 35.
    Kontogiannidou E, Andreadis DA, Zografos AL, Nazar H, Klepetsanis P, van der Merwe SM, Fatouros DG (2017) Ex vivo buccal drug delivery of ropinirole hydrochloride in the presence of permeation enhancers: the effect of charge. Pharm Dev Technol 22(8):1017–1021.  https://doi.org/10.3109/10837450.2015.1135343CrossRefPubMedGoogle Scholar
  36. 36.
    Wu X, Desai K-GH, Mallery SR, Holpuch AS, Phelps MP, Schwendeman SP (2012) Mucoadhesive Fenretinide patches for site-specific chemoprevention of Oral Cancer: enhancement of Oral mucosal permeation of Fenretinide by Coincorporation of propylene glycol and menthol. Mol Pharm 9(4):937–945.  https://doi.org/10.1021/mp200655kCrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Saxena A, Tewari G, Saraf SA (2011) Formulation and evaluation of mucoadhesive buccal patch of acyclovir utilizing inclusion phenomenon. Braz J Pharm Sci 47(4):887–897.  https://doi.org/10.1590/S1984-82502011000400026CrossRefGoogle Scholar
  38. 38.
    Oh D-H, Chun K-H, Jeon S-O, Kang J-W, Lee S (2011) Enhanced transbuccal salmon calcitonin (sCT) delivery: effect of chemical enhancers and electrical assistance on in vitro sCT buccal permeation. Eur J Pharm Biopharm 79(2):357–363.  https://doi.org/10.1016/j.ejpb.2011.05.010CrossRefPubMedGoogle Scholar
  39. 39.
    Starokadomskyy PL, Dubey IY (2006) New absorption promoter for the buccal delivery: preparation and characterization of lysalbinic acid. Int J Pharm 308(1–2):149–154.  https://doi.org/10.1016/j.ijpharm.2005.11.013CrossRefPubMedGoogle Scholar
  40. 40.
    Langoth N, Bernkop-Schnurch A, Kurka P (2005) The inhibitory effect of glutathione on buccal enzymatic degradation of therapeutic peptides (leu-enkephalin, luteinizing hormone-releasing hormone and pituitary adenylate cyclase activating peptide). J Drug Delivery Sci Technol 15(6):435–438.  https://doi.org/10.1016/S1773-2247(05)50084-4CrossRefGoogle Scholar
  41. 41.
    Bernkop-Schnürch A, Paikl C, Valenta C (1997) Novel bioadhesive chitosan-EDTA conjugate protects leucine enkephalin from degradation by aminopeptidase N. Pharm Res 14(7):917–922. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9244150
  42. 42.
    Guggi D, Bernkop-Schnürch A (2003) In vitro evaluation of polymeric excipients protecting calcitonin against degradation by intestinal serine proteases. Int J Pharm 252(1–2):187–196. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12550794CrossRefGoogle Scholar
  43. 43.
    Zheng C, Zhang XG, Sun L, Zhang ZP, Li CX (2013) Biodegradable and redox-responsive chitosan/poly(l-aspartic acid) submicron capsules for transmucosal delivery of proteins and peptides. J Mater Sci Mater Med 24(4):931–939.  https://doi.org/10.1007/s10856-013-4863-zCrossRefPubMedGoogle Scholar
  44. 44.
    Chinwala MG, Lin S (2010) Application of hydrogel polymers for development of thyrotropin releasing hormone-loaded adhesive buccal patches. Pharm Dev Technol 15(3):311–327.  https://doi.org/10.3109/10837450903229073CrossRefPubMedGoogle Scholar
  45. 45.
    Yuan Q, Fu Y, Kao WJ, Janigro D, Yang H (2011) Transbuccal delivery of CNS therapeutic nanoparticles: synthesis, characterization, and in vitro permeation studies. ACS Chem Neurosci 2(11):676–683.  https://doi.org/10.1021/cn200078mCrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Monti D, Burgalassi S, Rossato MS, Albertini B, Passerini N, Rodriguez L, Chetoni P (2010) Poloxamer 407 microspheres for orotransmucosal drug delivery. Part II: in vitro/in vivo evaluation. Int J Pharm 400(1–2):32–36.  https://doi.org/10.1016/j.ijpharm.2010.08.018CrossRefPubMedGoogle Scholar
  47. 47.
    Suh JW, Lee J-S, Ko S, Lee HG (2016) Preparation and characterization of mucoadhesive buccal nanoparticles using chitosan and dextran sulfate. J Agric Food Chem 64(26):5384–5388.  https://doi.org/10.1021/acs.jafc.6b00849CrossRefPubMedGoogle Scholar
  48. 48.
    Hazzah HA, Farid RM, Nasra MMA, EL-Massik MA, Abdallah OY (2015) Lyophilized sponges loaded with curcumin solid lipid nanoparticles for buccal delivery: development and characterization. Int J Pharm 492(1–2):248–257.  https://doi.org/10.1016/j.ijpharm.2015.06.022CrossRefPubMedGoogle Scholar
  49. 49.
    Kumar-Krishnan S, Prokhorov E, Hernández-Iturriaga M, Mota-Morales JD, Vázquez-Lepe M, Kovalenko Y et al (2015) Chitosan/silver nanocomposites: synergistic antibacterial action of silver nanoparticles and silver ions. Eur Polym J 67:242–251.  https://doi.org/10.1016/J.EURPOLYMJ.2015.03.066CrossRefGoogle Scholar
  50. 50.
    Holpuch AS, Hummel GJ, Tong M, Seghi GA, Pei P, Ma P et al (2010) Nanoparticles for local drug delivery to the oral mucosa: proof of principle studies. Pharm Res 27(7):1224–1236.  https://doi.org/10.1007/s11095-010-0121-yCrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Chatterjee K, Zhang J, Honbo N, Karliner JS (2010) Doxorubicin cardiomyopathy. Cardiology 115(2):155–162.  https://doi.org/10.1159/000265166CrossRefPubMedGoogle Scholar
  52. 52.
    Abbasi MM, Jahanban-Esfahlan R, Monfaredan A, Seidi K, Hamishehkar H, Khiavi MM (2014) Oral and IV dosages of doxorubicin-methotrexate loaded- nanoparticles inhibit progression of oral cancer by down- regulation of matrix Methaloproteinase 2 expression in vivo. Asian Pac J Cancer Prev 15(24):10705–10711. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25605162CrossRefGoogle Scholar
  53. 53.
    Endo K, Ueno T, Kondo S, Wakisaka N, Murono S, Ito M et al (2013) Tumor-targeted chemotherapy with the nanopolymer-based drug NC-6004 for oral squamous cell carcinoma. Cancer Sci 104(3):369–374.  https://doi.org/10.1111/cas.12079CrossRefPubMedGoogle Scholar
  54. 54.
    Giovino C, Ayensu I, Tetteh J, Boateng JS (2012) Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules. Int J Pharm 428(1–2):143–151.  https://doi.org/10.1016/j.ijpharm.2012.02.035CrossRefPubMedGoogle Scholar
  55. 55.
    Giovino C, Ayensu I, Tetteh J, Boateng JS (2013) An integrated buccal delivery system combining chitosan films impregnated with peptide loaded PEG-b-PLA nanoparticles. Colloids Surf B: Biointerfaces 112:9–15.  https://doi.org/10.1016/j.colsurfb.2013.07.019CrossRefPubMedGoogle Scholar
  56. 56.
    Morales JO, Huang S, Williams RO, McConville JT (2014) Films loaded with insulin-coated nanoparticles (ICNP) as potential platforms for peptide buccal delivery. Colloids Surf B: Biointerfaces 122:38–45.  https://doi.org/10.1016/j.colsurfb.2014.05.025CrossRefPubMedGoogle Scholar
  57. 57.
    Bernstein G (2008) Delivery of insulin to the buccal mucosa utilizing the rapidmist ™ system. Expert Opin Drug Deliv 5(9):1047–1055.  https://doi.org/10.1517/17425247.5.9.1047CrossRefPubMedGoogle Scholar
  58. 58.
    Morales JO, McConville JT (2014) Novel strategies for the buccal delivery of macromolecules. Drug Dev Ind Pharm 40(5):579–590.  https://doi.org/10.3109/03639045.2014.892960CrossRefPubMedGoogle Scholar
  59. 59.
    Morsi NM, Abdelbary GA, Elshafeey AH, Ahmed MA (2017) Engineering of a novel optimized platform for sublingual delivery with novel characterization tools: in vitro evaluation and in vivo pharmacokinetics study in human. Drug Deliv 24(1):918–931.  https://doi.org/10.1080/10717544.2017.1334719CrossRefPubMedGoogle Scholar
  60. 60.
    Caon T, Jin L, Simões CMO, Norton RS, Nicolazzo JA (2015) Enhancing the buccal mucosal delivery of peptide and protein therapeutics. Pharm Res 32(1):1–21.  https://doi.org/10.1007/s11095-014-1485-1CrossRefPubMedGoogle Scholar
  61. 61.
    Yang T-Z, Wang X-T, Yan X-Y, Zhang Q (2002) Phospholipid deformable vesicles for buccal delivery of insulin. Chem Pharm Bull 50(6):749–753. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12045327CrossRefGoogle Scholar
  62. 62.
    El-Samaligy MS, Afifi NN, Mahmoud EA (2006) Increasing bioavailability of silymarin using a buccal liposomal delivery system: preparation and experimental design investigation. Int J Pharm 308(1–2):140–148.  https://doi.org/10.1016/j.ijpharm.2005.11.006CrossRefPubMedGoogle Scholar
  63. 63.
    Lankalapalli S, Tenneti VSVK (2016) Formulation and evaluation of rifampicin liposomes for buccal drug delivery. Curr Drug Deliv 13(7):1084–1099. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/26687256CrossRefGoogle Scholar
  64. 64.
    Guleria S, Bonde S (2014) Formulation and optimization of liposomal delivery vehicle of an anti-cancer drug exemestane by BOX-Behnken design. J Pharm Res 8(7):937–941. Retrieved from http://jprsolutions.info
  65. 65.
    Prabhakara P, Zenia T, Marina K, Shama KP, Girish SN, Matapady NH (2013) Preparation and evaluation of lipid vesicles of camptothecin as targeted drug delivery system. Pak J Pharm Sci 26(4):779–786. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23811458
  66. 66.
    Aliu H, Rask C, Brimnes J, Andresen T (2017) Enhanced efficacy of sublingual immunotherapy by liposome-mediated delivery of allergen. Int J Nanomedicine 12:8377–8388.  https://doi.org/10.2147/IJN.S137033CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Wang N, Wang T, Zhang M, Chen R, Niu R, Deng Y (2014) Mannose derivative and lipid a dually decorated cationic liposomes as an effective cold chain free oral mucosal vaccine adjuvant-delivery system. Eur J Pharm Biopharm 88(1):194–206.  https://doi.org/10.1016/j.ejpb.2014.04.007CrossRefPubMedGoogle Scholar
  68. 68.
    Genina N, Fors D, Palo M, Peltonen J, Sandler N (2013) Behavior of printable formulations of loperamide and caffeine on different substrates—effect of print density in inkjet printing. Int J Pharm 453(2):488–497.  https://doi.org/10.1016/j.ijpharm.2013.06.003CrossRefPubMedGoogle Scholar
  69. 69.
    Palem CR, Dudhipala NR, Battu SK, Repka MA, Rao Yamsani M (2016) Development, optimization and in vivo characterization of domperidone-controlled release hot-melt-extruded films for buccal delivery. Drug Dev Ind Pharm 42(3):473–484.  https://doi.org/10.3109/03639045.2015.1104346CrossRefPubMedGoogle Scholar
  70. 70.
    Dissolving Films (2010) Retrieved December 9, 2018, from https://www.particlesciences.com/news/technical-briefs/2010/dissolving-films.html
  71. 71.
    Chinna Reddy P, Chaitanya KSC, Madhusudan Rao Y (2011) A review on bioadhesive buccal drug delivery systems: current status of formulation and evaluation methods. Daru 19(6):385–403. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23008684
  72. 72.
    Morales JO, McConville JT (2011) Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biopharm 77(2):187–199.  https://doi.org/10.1016/j.ejpb.2010.11.023CrossRefPubMedGoogle Scholar
  73. 73.
    Morales JO, Brayden DJ (2017) Buccal delivery of small molecules and biologics: of mucoadhesive polymers, films, and nanoparticles. Curr Opin Pharmacol 36:22–28.  https://doi.org/10.1016/j.coph.2017.07.011CrossRefPubMedGoogle Scholar
  74. 74.
    Montenegro-Nicolini M, Miranda V, Morales JO (2017) Inkjet printing of proteins: an experimental approach. AAPS J 19(1):234–243.  https://doi.org/10.1208/s12248-016-9997-8CrossRefPubMedGoogle Scholar
  75. 75.
    Sheoran R (2018) Buccal drug delivery system: a review. Int J Pharm Sci Rev Res 50(1):40–46. Retrieved from https://pocketdentistry.com/12-oral-mucosa/
  76. 76.
    Mohamad SA, Abdelkader H, Elrehany M, Mansour HF (2018) Vitamin B12 buccoadhesive tablets: auspicious non-invasive substitute for intra muscular injection: formulation, in vitro and in vivo appraisal. Drug Dev Ind Pharm:1–8.  https://doi.org/10.1080/03639045.2018.1529787CrossRefGoogle Scholar
  77. 77.
    Prasanna RI, Anitha P, Chetty CM (2011) Formulation and evaluation of bucco-adhesive tablets of sumatriptan succinate. Int J Pharm Invest 1(3):182–191.  https://doi.org/10.4103/2230-973X.85971CrossRefGoogle Scholar
  78. 78.
    Hao J, Heng PWS (2003) Buccal delivery systems. Drug Dev Ind Pharm 29(8):821–832.  https://doi.org/10.1081/DDC-120024178CrossRefPubMedGoogle Scholar
  79. 79.
    Ceschel GC, Maffei P, Borgia SL (2001) Design and evaluation of a new mucoadhesive bilayered tablet containing nimesulide for buccal administration. STP Pharm Sci 11(2):151–156Google Scholar
  80. 80.
    Emezine (prochlorperazine) FDA Approval Status – Drugs.com (n.d.) Retrieved December 9, 2018, from https://www.drugs.com/history/emezine.html
  81. 81.
    Lalla RV, Bensadoun R-J (2011) Miconazole mucoadhesive tablet for oropharyngeal candidiasis. Expert Rev Anti-Infect Ther 9(1):13–17.  https://doi.org/10.1586/eri.10.152CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Downing C, Moayyad J, Tamirisa A, Tyring S (2014) Acyclovir Lauriad®: a muco-adhesive buccal tablet for the treatment of recurrent herpes labialis. Expert Rev Anti-Infect Ther 12(3):283–287.  https://doi.org/10.1586/14787210.2014.880337CrossRefPubMedGoogle Scholar
  83. 83.
    Kalia YN, Naik A, Garrison J, Guy RH (2004) Iontophoretic drug delivery. Adv Drug Deliv Rev 56(5):619–658.  https://doi.org/10.1016/J.ADDR.2003.10.026CrossRefPubMedGoogle Scholar
  84. 84.
    Kasting GB (1992) Theoretical models for iontophoretic delivery. Adv Drug Deliv Rev 9(2–3):177–199.  https://doi.org/10.1016/0169-409X(92)90023-JCrossRefGoogle Scholar
  85. 85.
    Goldstein J (2014) Sumatriptan iontophoretic transdermal system: a novel approach to migraine-specific therapy. Neurol Clin Pract 4(5):454–457.  https://doi.org/10.1212/CPJ.0000000000000080CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Oliashirazi A, Wilson-Byrne T, Shuler FD, Parvizi J (2017) Patient-controlled fentanyl Iontophoretic transdermal system improved postoperative mobility compared to intravenous patient-controlled analgesia morphine: a pooled analysis of randomized, controlled trials. Pain Pract 17(2):197–207.  https://doi.org/10.1111/papr.12432CrossRefPubMedGoogle Scholar
  87. 87.
    Güngör S, Delgado-Charro MB, Ruiz-Perez B, Schubert W, Isom P, Moslemy P et al (2010) Trans-scleral iontophoretic delivery of low molecular weight therapeutics. J Control Release 147(2):225–231.  https://doi.org/10.1016/j.jconrel.2010.07.107CrossRefPubMedGoogle Scholar
  88. 88.
    Tierney MJ, Tamada JA, Potts RO, Jovanovic L, Garg S (2001) Clinical evaluation of the GlucoWatch® biographer: a continual, non-invasive glucose monitor for patients with diabetes. Biosens Bioelectron 16(9–12):621–629.  https://doi.org/10.1016/S0956-5663(01)00189-0CrossRefPubMedGoogle Scholar
  89. 89.
    Barben J, Ammann RA, Metlagel A, Schoeni MH (2005) Conductivity determined by a new sweat analyzer compared with chloride concentrations for the diagnosis of cystic fibrosis. J Pediatr 146(2):183–188.  https://doi.org/10.1016/J.JPEDS.2004.08.085CrossRefPubMedGoogle Scholar
  90. 90.
    Jacobsen, J. (2001). Buccal iontophoretic delivery of atenolol. HCl employing a new in vitro three-chamber permeation cell. J Control Release 70(1–2):83–95. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11166410CrossRefGoogle Scholar
  91. 91.
    Hu L, Silva SMC, Damaj BB, Martin R, Michniak-Kohn BB (2011b) Transdermal and transbuccal drug delivery systems: enhancement using iontophoretic and chemical approaches. Int J Pharm 421(1):53–62.  https://doi.org/10.1016/j.ijpharm.2011.09.025CrossRefPubMedGoogle Scholar
  92. 92.
    Puapichartdumrong P, Ikeda H, Suda H (2003) Facilitation of iontophoretic drug delivery through intact and caries-affected dentine. Int Endod J 36(10):674–81. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14511224CrossRefGoogle Scholar
  93. 93.
    Hu L, Damaj BB, Martin R, Michniak-Kohn BB (2011a) Enhanced in vitro transbuccal drug delivery of ondansetron HCl. Int J Pharm 404(1–2):66–74.  https://doi.org/10.1016/j.ijpharm.2010.10.052CrossRefPubMedGoogle Scholar
  94. 94.
    Wei R, Simon L, Hu L, Michniak-Kohn B (2012) Effects of iontophoresis and chemical enhancers on the transport of lidocaine and nicotine across the Oral mucosa. Pharm Res 29(4):961–971.  https://doi.org/10.1007/s11095-011-0636-xCrossRefPubMedGoogle Scholar
  95. 95.
    Ren W, Baig A, White DJ, Li SK (2016) Characterization of cornified oral mucosa for iontophoretically enhanced delivery of chlorhexidine. Eur J Pharm Biopharm 99:35–44.  https://doi.org/10.1016/j.ejpb.2015.11.005CrossRefPubMedGoogle Scholar
  96. 96.
    Kim HE, Kim B-I (2016) Can the application of fluoride iontophoresis improve remineralisation of early caries lesions? Oral Health Prev Dent 14(2):177–182.  https://doi.org/10.3290/j.ohpd.a35007CrossRefPubMedGoogle Scholar
  97. 97.
    Gaberšček M, Klemenc F (2006) Electrophoretic efficiency of an ionic toothbrush. Acta Chim Slov 53:521–526. Retrieved from http://acta-arhiv.chem-soc.si/53/53-4-521.pdf
  98. 98.
    Lennernäs H, Abrahamsson B, Persson EM, Knutson L (2007) Oral drug absorption and the biopharmaceutics classification system. J Drug Deliv Sci Technol 17(4):237–244.  https://doi.org/10.1016/S1773-2247(07)50090-0CrossRefGoogle Scholar
  99. 99.
    Bredenberg S, Duberg M, Lennernäs B, Lennernäs H, Pettersson A, Westerberg M, Nyström C (2003) In vitro and in vivo evaluation of a new sublingual tablet system for rapid oromucosal absorption using fentanyl citrate as the active substance. Eur J Pharm Sci 20(3):327–334. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14592698CrossRefGoogle Scholar
  100. 100.
    Arima H, Higashi T, Motoyama K (2012) Improvement of the bitter taste of drugs by complexation with cyclodextrins: applications, evaluations and mechanisms. Ther Deliv 3(5):633–644. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22834407CrossRefGoogle Scholar
  101. 101.
    Coupland JN, Hayes JE (2014) Physical approaches to masking bitter taste: lessons from food and pharmaceuticals. Pharm Res 31(11):2921–2939.  https://doi.org/10.1007/s11095-014-1480-6CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Faisal W, Farag F, Abdellatif AAH, Abbas A (2018) Taste masking approaches for medicines. Curr Drug Deliv 15(2):167–185.  https://doi.org/10.2174/1567201814666171013145958CrossRefPubMedGoogle Scholar
  103. 103.
    Felton LA (2018) Use of polymers for taste-masking pediatric drug products. Drug Dev Ind Pharm 44(7):1049–1055.  https://doi.org/10.1080/03639045.2018.1430822CrossRefPubMedGoogle Scholar
  104. 104.
    Joshi S, Petereit H-U (2013) Film coatings for taste masking and moisture protection. Int J Pharm 457(2):395–406.  https://doi.org/10.1016/j.ijpharm.2013.10.021CrossRefPubMedGoogle Scholar
  105. 105.
    Kaushik D, Dureja H (2014) Recent patents and patented technology platforms for pharmaceutical taste masking. Recent Pat Drug Deliv Formul 8(1):37–45. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24499438CrossRefGoogle Scholar
  106. 106.
    Maniruzzaman M, Boateng JS, Chowdhry BZ, Snowden MJ, Douroumis D (2014) A review on the taste masking of bitter APIs: hot-melt extrusion (HME) evaluation. Drug Dev Ind Pharm 40(2):145–156.  https://doi.org/10.3109/03639045.2013.804833CrossRefPubMedGoogle Scholar
  107. 107.
    Szakonyi G, Zelkó R (2012) Taste-masking possibilities in solid dosage forms. Acta Pharm Hung 82(2):81–90. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22870781
  108. 108.
    Abay F, Ugurlu T (2015) Orally disintegrating tablets: a short review. J Pharm Drug Dev 3(3):1–7Google Scholar
  109. 109.
    Fu Y, Yang S, Jeong SH, Kimura S, Park K (2004) Orally fast disintegrating tablets: developments, technologies, taste-masking and clinical studies. Crit Rev Ther Drug Carrier Syst 21(6):433–476. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15658933CrossRefGoogle Scholar
  110. 110.
    Knitsch K-W, Hagen A, Munz E, Determann H. (1976, December 3). US4134943A. United States patent and trademark Office Retrieved from https://patents.google.com/patent/US4134943
  111. 111.
    Iles MC, Atherton AD, Copping NM (1989) Patent No. US5188825A. Retrieved from https://patents.google.com/patent/US5188825A/en
  112. 112.
    Arya A, Chandra A, Sharma V, Pathak K (2010) Fast dissolving oral films: an innovative drug delivery system and dosage form. Int J ChemTech Res CODEN 2. Retrieved from https://pdfs.semanticscholar.org/b137/7e130c98a6a1ccb6de03525bb73393716806.pdf
  113. 113.
    Vondrak B, Barnhart S (2008). Dissolvable films: dissolvable films for flexible product format in drug delivery. Pharm Tech. Retrieved from http://www.pharmtech.com/dissolvable-films-dissolvable-films-flexible-product-format-drug-delivery
  114. 114.
    Dahiya M, Saha S, Shahiwala AF (2009) A review on mouth dissolving films. Curr Drug Deliv 6(5).  https://doi.org/10.2174/156720109789941713CrossRefGoogle Scholar
  115. 115.
    Boateng JS, Auffret AD, Matthews KH, Humphrey MJ, Stevens HNE, Eccleston GM (2010) Characterisation of freeze-dried wafers and solvent evaporated films as potential drug delivery systems to mucosal surfaces. Int J Pharm 389(1–2):24–31.  https://doi.org/10.1016/j.ijpharm.2010.01.008CrossRefPubMedGoogle Scholar
  116. 116.
    Reiner V, Giarratana N, Monti NC, Breitenbach A, Klaffenbach P (2010) Rapidfilm®: an innovative pharmaceutical form designed to improve patient compliance. Int J Pharm 393(1–2):55–60.  https://doi.org/10.1016/j.ijpharm.2010.03.055CrossRefPubMedGoogle Scholar
  117. 117.
    Hoffmann EM, Breitenbach A, Breitkreutz J (2011) Advances in orodispersible films for drug delivery. Expert Opin Drug Deliv 8(3): 299–316.  https://doi.org/10.1517/17425247.2011.553217CrossRefGoogle Scholar
  118. 118.
    Chaudhary SA, Shahiwala AF (2010) Medicated chewing gum a potential drug delivery system. Expert Opin Drug Deliv 7(7):871.  https://doi.org/10.1517/17425247.2010.493554CrossRefPubMedGoogle Scholar
  119. 119.
    Mendes R, Bhargava H (2006) Lozenges. In: Swarbick J (ed) Encyclopedia of pharmaceutical technology, 3rd edn. Informa Healthcare Inc, North California, pp 2231–2235Google Scholar
  120. 120.
    Majekodunmi SO (2015) A review on lozenges. Am J Med Med Sci 5(2):99–104. Retrieved from http://article.sapub.org/10.5923.j.ajmms.20150502.07.html
  121. 121.
    Pfister W, Ghosh T (2005) Orally disintegrating tablets orally disintegrating tablets products, technologies, and development issues. Pharm Technol 29(10):136. Retrieved from http://www.pharmtech.com/orally-disintegrating-tablets-2?id=&sk=&date=&pageID=2
  122. 122.
    Siddiqui MN, Garg G, Sharma K (2010) Fast dissolving tablets: preparation, characterization and evaluation: an overview. Int J Pharm Sci Rev Res 4(2):Article 015. Retrieved from www.globalresearchonline.net
  123. 123.
    Committee for medicinal products for use; European Medicines Agency (2010) Guideline on the investigation of bioequivalence. Retrieved from http://www.ema.europa.eu
  124. 124.
    García-Arieta A, Gordon J (2012) Bioequivalence requirements in the European Union: critical discussion. AAPS J 14(4):738–748.  https://doi.org/10.1208/s12248-012-9382-1CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Park K, Kwon IC, Park K (2011) Oral protein delivery: current status and future prospect. React Funct Polym 71(3):280–287.  https://doi.org/10.1016/J.REACTFUNCTPOLYM.2010.10.002CrossRefGoogle Scholar
  126. 126.
    Camenisch G, Alsenz J, van de Waterbeemd H, Folkers G (1998) Estimation of permeability by passive diffusion through caco-2 cell monolayers using the drugs’ lipophilicity and molecular weight. Eur J Pharm Sci 6(4):317–324. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9795088CrossRefGoogle Scholar
  127. 127.
    Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7(1):21–39.  https://doi.org/10.1038/nrd2399CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Pharmaceutics DepartmentDubai Pharmacy College for GirlsDubaiUnited Arab Emirates

Personalised recommendations