Advertisement

Poorly Water-Soluble Drugs and Formulation Strategy to Improve Oral Bioavailability

  • Mo. Rahil G. Bhura
  • Aliasgar Shahiwala
Chapter
  • 33 Downloads

Abstract

Poor water solubility of a drug is a tough and difficult task for researchers and pharmaceutical scientists during the formulation and development of dosage forms. Poor drug solubility often leads to inadequate and variable bioavailability. The properties of drugs cause problems in drug dissolution and its rates are solubility, particle size, polymorphism, salt form, complexation, wettability, etc. The improvement of drug solubility there by its oral bioavailability remains one of most challenging aspects of drug formulation process mostly for oral drug administration and the oral bioavailability will be governed by various parameters including dissolution rate, aqueous solubility, drug permeability, pre-systemic metabolism and susceptibility. To improve solubility and rate of dissolution, there are many approaches available like pH adjustment, particle size reduction, sono-crystallization, inclusion complexation, liquid solid methods, solid dispersion methods, self-emulsifying method, supercritical fluid processes, freeze drying method, spray drying method, hot melt extrusion method etc. Selection of right technique is the key to improve the drug dissolution and bioavailability and it helps to avoid the rejection of recent chemical entities because of low solubility.

Keywords

Solubility Dissolution Bioavailability Approaches 

References

  1. 1.
    Reddy TA, Srinivasan S, Kavitha K, Kumar R, Singh J (2013) Review on: better solubility enhancement of poorly water-soluble drugs. Int J Invent Pharm Sci 1(4):267Google Scholar
  2. 2.
    Dhillon BD, Goyal NK, Malviya R, Sharma PK (2014) Poorly water-soluble drugs: change in solubility for improved dissolution characteristics. Glob J Pharm 148(1):26–35Google Scholar
  3. 3.
    Sun J, Wang F, Sui Y, She Z, Zhai W, Wang C, Deng Y (2012) Int J Nanomed 7:5733–5744Google Scholar
  4. 4.
    Kumar P, Singh C (2013) A study on solubility enhancement methods for poorly water soluble drugs. Am J Pharm Sci 1(4):67Google Scholar
  5. 5.
    Massayoshi S, Mino, Kazuo N, Takarazuka, Masso K, Kyoto, Takashi O, Toyonaka, inventors; Tanabe Seiyaku Co., Ltd, Osaka, Japan, assigne (1993) Process for Micronizing slightly soluble drug. United States Patent US5202129, 13 Apr 1993Google Scholar
  6. 6.
    Remon JP, Vervaet C, inventors (2015) Pharmaceutical nanosuspension. European Patent Specification EP2768485B1, 22 July 2015Google Scholar
  7. 7.
    David B, David A, Bruce A, Cynthia L, Matthew D, Michael J, inventors; Dow Global technologies LLC, Midland, MI, Assignee (2013) Method to enhance aqueous solubility of poorly soluble actives. United States Patent US8497303B2, 30 July 2013Google Scholar
  8. 8.
    Yunxia BL, Rahman MA, Lester JD, inventors; Solid dispersion of poorly soluble compounds comprising crospovidone and at least one water soluble polymer. World Intellectual Property Organization WO2013040187A1, 21 Mar 2013Google Scholar
  9. 9.
    Dipen D, Siva R, Kiran V, Navnit H, Anekant J, Wantanee P, inventors; Kashiv Pharma, LLC, Bridgewater, NJ, Assignee (2016) Self nanoemulsion of poorly soluble drugs. United States Patent US9511078B2, 6 Dec 2016Google Scholar
  10. 10.
    Sean B, Mark D, James E, Nailesh J, Krishnaswamy N, inventors; Baxter International Inc. Deerfield, IL, Assignee. Preparation of submicron sized nanoparticles via dispersion lyophilisation. United States Patent US8722091B2, 13 May 2014Google Scholar
  11. 11.
    Isaac G, Hibrenigus T, inventors; Exxpharma, LLC, Somerville, NJ, assignee (2009) Process for enhancing the solubility of poorly soluble drugs. United States Patent US7607596B1, 27 Oct 2009Google Scholar
  12. 12.
    Chaumeil JC (1998) Micronization: a method of improving the bioavailability of poorly soluble drugs. Methods Findings Exp Clin Pharm 20(3):211–215Google Scholar
  13. 13.
    Savjani KT, Gajjar AK, Savjani JK (2012) Drug solubility: importance and enhancement techniques. Hindawi Int Scholarly Res Notices Article ID 195727, 10Google Scholar
  14. 14.
    Krishnaiah YSR (2010) Pharmaceutical technologies for enhancing oral bioavailability of poorly soluble drugs. J Bioequivalence Bioavail 2(2):28–36CrossRefGoogle Scholar
  15. 15.
    Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, Cho JM, Yun G, Lee J (2014) Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci 9(6):304–316CrossRefGoogle Scholar
  16. 16.
    Han X, Ghoroi C, To D et al (2011) Simultaneous micronization and surface modification for improvement of flow and dissolution of drug particles. Int J Pharm 415:185–195PubMedCrossRefGoogle Scholar
  17. 17.
    Jinno J, Kamada N, Miyake M et al (2006) Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J Control Release 111:56–64PubMedCrossRefGoogle Scholar
  18. 18.
    Liversidge GG, Cundy KC (1995) Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm 125:91–97CrossRefGoogle Scholar
  19. 19.
    Dantu AS, Ramya Devi D, Vedha Hari BN (2013) Effect of ball milling on the physical dispersions of nimesulide for solubility enhancement. Int J Pharm Sci Rev Res 18(2):77–84Google Scholar
  20. 20.
    Savjani KT, Gajjar AK, Savjani JK (2012) Drug solubility: importance and enhancement techniques ISRN Pharm:1–10CrossRefGoogle Scholar
  21. 21.
    Rasenack N, Steckel H, Muller BW (2002b) In-situ micronization of drugs: improvement of pulmonary dosage forms. Proc Drug Deliv Lungs XIII:75–78Google Scholar
  22. 22.
    Rasenack N, Hartenhauer H, Muller BW (2003) Microcrystals for dissolution rate enhancement of poorly water-soluble drugs. Int J Pharm 254:137–145PubMedCrossRefGoogle Scholar
  23. 23.
    Ahmad Z, Maurya N, Mishra KS, Khan I (2011) Solubility enhancement of poorly water soluble drugs: a review. Int J Pharm Technol 3(1):807–823Google Scholar
  24. 24.
    Sekiguchi K, Obi N (1961) Studies on absorption of eutectic mixtures. I. A comparison of the behavior of eutectic mixtures of sulphathiazole and that of ordinary sulphathiazole in man. Chem Pharm Bull 9:866–872CrossRefGoogle Scholar
  25. 25.
    Keck CM, Muller RH (2006) Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 62(1):3–16PubMedCrossRefGoogle Scholar
  26. 26.
    Karanth H, SubrayaShenoy V, Murthy RR (2006) Industrially feasible alternative approaches in the manufacture of solid dispersions: a technical report. AAPS PharmSciTech 7(4):Article 87PubMedCrossRefGoogle Scholar
  27. 27.
    Perrut M, Jung J, Leboeuf F (2005) Enhancement of dissolution rate of poorly soluble active ingredients by supercritical fluid processes Part II: Preparation of composite particles. Int J Pharm 288:11–16PubMedCrossRefGoogle Scholar
  28. 28.
    Patel JN, Rathod DM, Patel NA, Modasiya MK (2012) Techniques to improve the solubility poorly soluble drugs. Int US J Life Sci 3(2):1459–1469Google Scholar
  29. 29.
    Vogt M, Kunath K, Dressman JB (2008) Dissolution enhancement of fenofibrate by micronization, cogrinding and spray-drying: comparison with commercial preparations. Eur J Pharm Biopharm 68(2):283–288PubMedCrossRefGoogle Scholar
  30. 30.
    Murdande SB, Shah DA, Dave RH (2015) Impact of nanosizing on solubility and dissolution rate of poorly soluble pharmaceuticals. Pharm Drug Deliv Pharm Technol:1–9Google Scholar
  31. 31.
    Merisko-Liversidge E, Liversidge GG (2011) Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wetmedia milling technology. Adv Drug Deliv Rev 63(6):427–440PubMedCrossRefGoogle Scholar
  32. 32.
    Junghanns JUAH, M¨uller RH (2008) Nanocrystal technology, drug delivery and clinical applications. Int J Nanomed 3(3):295–309Google Scholar
  33. 33.
    Merisko-Liversidge E, Liversidge GG, Cooper ER (2003) Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm 18(2):113–2025CrossRefGoogle Scholar
  34. 34.
    Blagden N, de Matas M, Gavan PT, York P (2007) Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev 59(72):617–630PubMedCrossRefGoogle Scholar
  35. 35.
    Peterson ML, Hickey MB, Zaworotko MJ, Almarsson O (2006) Expanding the scope of crystal form evaluation in pharmaceutical science. J Pharm Sci 9:317–326Google Scholar
  36. 36.
    Chen J-M, Wang Z-Z, Wu C-B, Lia S, Lu T-B (2012) Crystal engineering approach to improve the solubility of mebendazole. Cryst Eng Comm 14:6221–6229CrossRefGoogle Scholar
  37. 37.
    Childs SL, Chyall LJ, Dunlap JT, Smolenskaya VN, Stahly BC, Stahly GP (2004) Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids. J Am Chem Soc 126(41):13335–13,342PubMedCrossRefGoogle Scholar
  38. 38.
    Hickey MB, Peterson ML, Scoppettuolo LA et al (2007) Performance comparison of a co-crystal of carbamazepine with marketed product. Eur J Pharm Biopharm 67(1):112–119PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Suleiman MS, Najib NM (1989) Isolation and physicochemical characterization of solid forms of glibenclamide. Int J Pharm 50(2):103–109CrossRefGoogle Scholar
  40. 40.
    Nabekura T, Ito Y, Cai H et al (2000) Preparation and in-vivo ocular absorption studies of disulfiram solid dispersion. Biol Pharm Bull 23:616–620PubMedCrossRefGoogle Scholar
  41. 41.
    Papageorgiou GZ, Papadimitriou S, Karavas E et al (2009) Improvement in chemical and physical stability of fluvastatin drug through hydrogen bonding interactions with different polymer matrices. Curr Drug Deliv 6:101–112PubMedCrossRefGoogle Scholar
  42. 42.
    Sahoo J, Murthy PN, Biswal S (2009) Manik formulation of sustained-release dosage form of verapamil hydrochloride by solid dispersion technique using Eudragit RLPO or Kollidon SR. AAPS PharmSciTech 10:27–33PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Shimpi SL, Mahadik KR, Paradkar AR (2009) Study on mechanism for amorphous drug stabilization using Gelucire 50/13. Chem Pharm Bull 57:937–942PubMedCrossRefGoogle Scholar
  44. 44.
    Kapoor B, Kaur R, Kaur S (2012) Solid dispersion- An Evolutionary approach for solubility enhancement of poorly water soluble drugs. Int J Recent Adv Pharm Res 2:1–16Google Scholar
  45. 45.
    Tran P, Pyo Y-C, Kim D-H, Lee S-E, Kim J-K, Park J-S (2019) Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharm 11(3):132PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Alam MA, Ali R, Al-Jenoobi FI, Al-Mohizea AM (2012) Solid dispersions: a strategy for poorly aqueous soluble drugs and technology updates. Expert Opin Drug Deliv 9(11):1419–1440PubMedCrossRefGoogle Scholar
  47. 47.
    Ghareeb MM, Abdulrasool AA, Hussein AA, Noordin MI (2009) Kneading technique for preparation of binary solid dispersion of meloxicam with poloxamer 188. AAPS PharmSciTech 10(4):1206–1215PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Singh A, Van den Mooter G (2016) Spray drying formulation of amorphous solid dispersions. Adv Drug Deliv Rev 100:27–50PubMedCrossRefGoogle Scholar
  49. 49.
    Paudel A, Worku ZA, Meeus J (2012) Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int J Pharm 453(1):253–284PubMedCrossRefGoogle Scholar
  50. 50.
    Patel RP, Patel MP, Suthar AM (2009) Spray drying technology: an overview. Indian J Sci Technol 2:44–47Google Scholar
  51. 51.
    Kim EJ, Chun MK, Jang JS et al (2006) Preparation of a solid dispersion of felodipine using a solvent wetting method. Eur J Pharm Biopharm 64(2):200–205PubMedCrossRefGoogle Scholar
  52. 52.
    Wu JX, Yang M, Berg F et al (2011) Influence of solvent evaporation rate and formulation factors on solid dispersion physical stability. Eur J Pharm Sci 44(5):610–620PubMedCrossRefGoogle Scholar
  53. 53.
    Sharma A, Jain CP (2010) Preparation and characterization of solid dispersions of carvedilol with PVP K30. Res Pharm Sci 5(1):49–56PubMedPubMedCentralGoogle Scholar
  54. 54.
    Dave A. Miller, Justin M. Keen (2014) KinetiSol®-based amorphous solid dispersions, amorphous solid dispersions:567–577Google Scholar
  55. 55.
    Hughey JR, DiNunzio JC, Bennett RC, Brough C, Miller DA, Ma H, McGinity JW (2010) Dissolution enhancement of a drug exhibiting thermal and acidic decomposition characteristics by fusion processing: a comparative study of hot melt extrusion and KinetiSol® dispersing. AAPS PharmSciTech 11(2):760–774PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Zawar LR, Bari SB (2012) Preparation, characterization and in vivo evaluation of antihyperglycemic activity of microwave generated repaglinide solid dispersion. Chem Pharm Bull 60(4):482–487PubMedCrossRefGoogle Scholar
  57. 57.
    Serajuddin A (1999) Solid dispersion technique. J Pharm Sci 88(10):891–900CrossRefGoogle Scholar
  58. 58.
    Duarte Í, Andrade R, Pinto JF, Temtem M (2016) Green production of cocrystals using a new solvent-free approach by spray congealing. Int J Pharm 506(1–2):68–78PubMedCrossRefGoogle Scholar
  59. 59.
    Beppu S, Ozeki T, Sasaki Y, Mizoe T, Takashima Y, Yuasa H, Okada H (2003) Preparation of particles for dry powder inhalation using a novel 4- fluid nozzle spray drier. J Pharm Sci Technol Jpn 63:228–237Google Scholar
  60. 60.
    Chen R, Tagawa M, Hoshi N et al (2004) Improved dissolution of an insoluble drug using a 4-fluid nozzle spray-drying technique. Chem Pharm Bull 52:1066–1070PubMedCrossRefGoogle Scholar
  61. 61.
    Ashour EA, Majumdar S, Alsheteli A, Alshehri S, Alsulays B, Feng X, Gryczke A, Kolter K, Langley N, Repka MA (2016 Aug) Hot melt extrusion as an approach to improve Solubility, permeability, and oral absorption of a psychoactive natural product, piperine. J Pharm Pharmacol. 68(8):989–998PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Ozawa M, Hasegawa K, Yonezawa Y, Sunada H (2002) Preparation of solid dispersion for ethenzamide – carbopol and theophylline – carbopol systems using a twin screw extruder. Chem Pharm Bull 50:802–807PubMedCrossRefGoogle Scholar
  63. 63.
    Xiqiang Z, Wenlong W, Hongzhen L, Yanpeng M, Chunyuan M, Zhanlong S (2014) Temperature rise and weight loss characteristics of wheat straw under microwave heating. J Anal Appl Pyrol 107:59–66CrossRefGoogle Scholar
  64. 64.
    Menéndez JA, Arenillas A, Fidalgo B, Fernández Y, Zubizarreta L, Calvo EG et al (2010) Microwave heating processes involving carbon materials. Fuel Proc Technol 91:1–8CrossRefGoogle Scholar
  65. 65.
    Maa YF, Ameri M, Shu C, Payne LG, Chen D (2004) Influenza vaccine powder formulation development: spray-freeze-drying and stability evaluation. J Pharm Sci 93:1913–1919CrossRefGoogle Scholar
  66. 66.
    Leuenberger H (2002) Spray Freeze drying – the process of choice for low water soluble drugs? J Nanopart Res 4:11–119CrossRefGoogle Scholar
  67. 67.
    Sweeney LG, Wang Z, Loebenberg R, Wong JP, Lange CF, Finlay WH (2005) Spray-freeze-dried liposomal ciprofloxacin powder for inhaled aerosol drug delivery. Int J Pharm 305:180–185PubMedCrossRefGoogle Scholar
  68. 68.
    Niwa T, Shimabara H, Kondo M, Danjo K (2009) Design of porous microparticles with single micron size by novel spray freeze drying technique using four fluid nozzle. Int J Pharm 382:88–97PubMedCrossRefGoogle Scholar
  69. 69.
    Rogers TL, Nelsen AC, Hu J, Brown JN, Sarkari M, Young TJ et al (2002) A novel particle engineering technology to enhance dissolution of poorly water soluble drugs: spray-freezing into liquid. Eur J Pharm Biopharm 54:271–280PubMedCrossRefGoogle Scholar
  70. 70.
    Adeli E (2017) The use of spray freeze drying for dissolution and oral bioavailability improvement of Azithromycin. Powder Technol 319:323–331CrossRefGoogle Scholar
  71. 71.
    Kulthe V, Chaudhari P, Aboul-Enein H (2014) Freeze-dried amorphous dispersions for solubility enhancement of thermosensitive API having low molecular lipophilicity. Drug Res 64(9):493–498CrossRefGoogle Scholar
  72. 72.
    Xu W-J, Xie H-J, Cao Q-R, Shi L-L, Cao Y, Zhu X-Y, Cui J-H (2014) Enhanced dissolution and oral bioavailability of valsartan solid dispersions prepared by a freeze-drying technique using hydrophilic polymers. Drug Deliv 23(1):41–48CrossRefGoogle Scholar
  73. 73.
    Singh B, Beg S, Kaur R, Singh P, Kaur R, Prakash O (2014) Recent advancements in self-emulsifying drug delivery systems (SEDDS). Crit Rev Ther Drug Carrier Syst 31.  https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2014008502PubMedCrossRefGoogle Scholar
  74. 74.
    Patel RB, Patel RP, Patel MM (2008) Self-emulsifying drug delivery systems. Pharm TechnolGoogle Scholar
  75. 75.
    Katteboinaa S, Chandrasekhar Pb VSR, Balaji S (2009) Approaches for the development of solid self-emulsifying drug delivery systems and dosage forms. Asian J Pharm Sci 4(4):240–253Google Scholar
  76. 76.
    Christensen KL, Pedersen GP, Kristensen HG (2001) Preparation of redispersibledry emulsions by spray drying. Int J Pharm 212:187–194PubMedCrossRefGoogle Scholar
  77. 77.
    Xiangliang Y et al (2008) A new solid self microemulsifying formulation prepared by spray-drying to improve the oral bioavailability of poorly water soluble drugs. Eur J Pharm Biopharm 70:439–444CrossRefGoogle Scholar
  78. 78.
    Reddy P, Maheswara U et al (2013) Self microemulsifying drug delivery systems: a review. Int J Res Pharm Nano Sci 2(3):317–331Google Scholar
  79. 79.
    Sharma VK, Koka A, Yadav J, Sharma AK, Keservani RK (2016) Self-micro emulsifying drug delivery systems: a strategy to improve oral bioavailability. Ars Pharm. 57(3):97–109Google Scholar
  80. 80.
    Li F, Song S, Guo Y, Zhao Q, Zhang X, Pan W, Yang X (2015) Preparation and pharmacokinetics evaluation of oral self-emulsifying system for poorly water-soluble drug Lornoxicam. Drug Deliv 22(4):487–498PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Mo. Rahil G. Bhura
    • 1
  • Aliasgar Shahiwala
    • 2
  1. 1.Department of PharmaceuticsSardar Patel College of PharmacyAnandIndia
  2. 2.Department of PharmaceuticsDubai Pharmacy CollegeDubaiUAE

Personalised recommendations