Advertisement

Functions of Protective Response-Related Signaling Pathways in the Regulation of Toxicity of Environmental Toxicants or Stresses

  • Dayong Wang
Chapter

Abstract

In nematodes, there are many forms of protective response potentially activated by environmental toxicants or stresses. We here focused on the introduction and discussion of important protection functions of neurotransmitters, antimicrobial proteins, mitochondrial UPR, endoplasmic reticulum UPR, and autophagy for nematodes in response to environmental toxicants or stresses. The underlying molecular mechanisms for the formation of these protective responses in nematodes exposed to environmental toxicants or stresses were also carefully discussed.

Keywords

Protective response signals Neurotransmitter Mitochondrial UPR Endoplasmic reticulum UPR Autophagy Environmental exposure Caenorhabditis elegans 

References

  1. 1.
    Wang D-Y (2018) Nanotoxicology in Caenorhabditis elegans. Springer, SingaporeCrossRefGoogle Scholar
  2. 2.
    Dong S-S, Qu M, Rui Q, Wang D-Y (2018) Combinational effect of titanium dioxide nanoparticles and nanopolystyrene particles at environmentally relevant concentrations on nematodes Caenorhabditis elegans. Ecotoxicol Environ Saf 161:444–450PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Zhao L, Qu M, Wong G, Wang D-Y (2017) Transgenerational toxicity of nanopolystyrene particles in the range of μg/L in nematode Caenorhabditis elegans. Environ Sci Nano 4:2356–2366CrossRefGoogle Scholar
  4. 4.
    Qu M, Xu K-N, Li Y-H, Wong G, Wang D-Y (2018) Using acs-22 mutant Caenorhabditis elegans to detect the toxicity of nanopolystyrene particles. Sci Total Environ 643:119–126PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Zhao Y-L, Wu Q-L, Li Y-P, Wang D-Y (2013) Translocation, transfer, and in vivo safety evaluation of engineered nanomaterials in the non-mammalian alternative toxicity assay model of nematode Caenorhabditis elegans. RSC Adv 3:5741–5757CrossRefGoogle Scholar
  6. 6.
    Ren M-X, Zhao L, Ding X-C, Krasteva N, Rui Q, Wang D-Y (2018) Developmental basis for intestinal barrier against the toxicity of graphene oxide. Part Fibre Toxicol 15:26PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Xiao G-S, Chen H, Krasteva N, Liu Q-Z, Wang D-Y (2018) Identification of interneurons required for the aversive response of Caenorhabditis elegans to graphene oxide. J Nanbiotechnol 16:45CrossRefGoogle Scholar
  8. 8.
    Ding X-C, Rui Q, Wang D-Y (2018) Functional disruption in epidermal barrier enhances toxicity and accumulation of graphene oxide. Ecotoxicol Environ Saf 163:456–464CrossRefGoogle Scholar
  9. 9.
    Zhao L, Kong J-T, Krasteva N, Wang D-Y (2018) Deficit in epidermal barrier induces toxicity and translocation of PEG modified graphene oxide in nematodes. Toxicol Res 7(6):1061–1070.  https://doi.org/10.1039/C8TX00136G CrossRefGoogle Scholar
  10. 10.
    Xiao G-S, Zhi L-T, Ding X-C, Rui Q, Wang D-Y (2017) Value of mir-247 in warning graphene oxide toxicity in nematode Caenorhabditis elegans. RSC Adv 7:52694–52701CrossRefGoogle Scholar
  11. 11.
    Zhao L, Wan H-X, Liu Q-Z, Wang D-Y (2017) Multi-walled carbon nanotubes-induced alterations in microRNA let-7 and its targets activate a protection mechanism by conferring a developmental timing control. Part Fibre Toxicol 14:27PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Wang Q-Q, Zhao S-Q, Zhao Y-L, Rui Q, Wang D-Y (2014) Toxicity and translocation of graphene oxide in Arabidopsis plants under stress conditions. RSC Adv 4:60891–60901CrossRefGoogle Scholar
  13. 13.
    Li Y-X, Yu S-H, Wu Q-L, Tang M, Wang D-Y (2013) Transmissions of serotonin, dopamine and glutamate are required for the formation of neurotoxicity from Al2O3-NPs in nematode Caenorhabditis elegans. Nanotoxicology 7:1004–1013PubMedCrossRefGoogle Scholar
  14. 14.
    Hoshikawa H, Uno M, Honjoh S, Nishida E (2017) Octopamine enhances oxidative stress resistance through the fasting-responsive transcription factor DAF-16/FOXO in C. elegans. Genes Cells 22:210–219PubMedCrossRefGoogle Scholar
  15. 15.
    Yu Y-L, Zhi L-T, Wu Q-L, Jing L-N, Wang D-Y (2018) NPR-9 regulates innate immune response in Caenorhabditis elegans by antagonizing activity of AIB interneurons. Cell Mol Immunol 15:27–37CrossRefGoogle Scholar
  16. 16.
    Zhi L-T, Yu Y-L, Jiang Z-X, Wang D-Y (2017) mir-355 functions as an important link between p38 MAPK signaling and insulin signaling in the regulation of innate immunity. Sci Rep 7:14560PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Sun L-M, Liao K, Hong C-C, Wang D-Y (2017) Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction. PLoS One 12:e0172228PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Sun L-M, Liao K, Wang D-Y (2017) Honokiol induces superoxide production by targeting mitochondrial respiratory chain complex I in Candida albicans. PLoS One 12:e0184003PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Yu Y-L, Zhi L-T, Guan X-M, Wang D-Y, Wang D-Y (2016) FLP-4 neuropeptide and its receptor in a neuronal circuit regulate preference choice through functions of ASH-2 trithorax complex in Caenorhabditis elegans. Sci Rep 6:21485PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Sun L-M, Zhi L-T, Shakoor S, Liao K, Wang D-Y (2016) microRNAs involved in the control of innate immunity in Candida infected Caenorhabditis elegans. Sci Rep 6:36036PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Sun L-M, Liao K, Li Y-P, Zhao L, Liang S, Guo D, Hu J, Wang D-Y (2016) Synergy between PVP-coated silver nanoparticles and azole antifungal against drug-resistant Candida albicans. J Nanosci Nanotechnol 16:2325–2335CrossRefGoogle Scholar
  22. 22.
    Wu Q-L, Cao X-O, Yan D, Wang D-Y, Aballay A (2015) Genetic screen reveals link between maternal-effect sterile gene mes-1 and P. aeruginosa-induced neurodegeneration in C. elegans. J Biol Chem 290:29231–29239PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Xie Y, Moussaif M, Choi S, Xu L, Sze JY (2013) RFX transcription factor DAF-19 regulates 5-HT and innate immune responses to pathogenic bacteria in Caenorhabditis elegans. PLoS Genet 9:e1003324PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Cao X, Aballay A (2016) Neural inhibition of dopaminergic signaling enhances immunity in a cell non-autonomous manner. Curr Biol 26:2329–2334PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Iwasaki K, Staunton J, Saifee O, Nonet ML, Thomas JH (1997) aex-3 encodes a novel regulator of presynaptic activity in C. elegans. Neuron 18:613–622PubMedCrossRefGoogle Scholar
  26. 26.
    Iwasaki K, Toyonaga R (2000) The Rab3 GDP/GTP exchange factor homolog AEX-3 has a dual function in synaptic transmission. EMBO J 19:4806–4816PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Qu M, Li Y-H, Wu Q-L, Xia Y-K, Wang D-Y (2017) Neuronal ERK signaling in response to graphene oxide in nematode Caenorhabditis elegans. Nanotoxicology 11:520–533CrossRefGoogle Scholar
  28. 28.
    Zhi L-T, Yu Y-L, Li X-Y, Wang D-Y, Wang D-Y (2017) Molecular control of innate immune response to Pseudomonas aeruginosa infection by intestinal let-7 in Caenorhabditis elegans. PLoS Pathog 13:e1006152PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kim DH, Ewbank JJ (2018) Signaling in the innate immune response. WormBook.  https://doi.org/10.1895/wormbook.1.83.2
  30. 30.
    Ewbank JJ, Pujol N (2016) Local and long-range activation of innate immunity by infection and damage in C. elegans. Curr Opin Immunol 38:1–7PubMedCrossRefGoogle Scholar
  31. 31.
    Kim DH (2013) Bacteria and the aging and longevity of Caenorhabditis elegans. Annu Rev Genet 47:233–246PubMedCrossRefGoogle Scholar
  32. 32.
    Pukkila-Worley R, Ausubel FM (2012) Immune defense mechanisms in the Caenorhabditis elegans intestinal epithelium. Curr Opin Immunol 24:3–9PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Irazoqui JE, Urbach JM, Ausubel FM (2010) Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat Rev Immunol 10:47–58PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kim DH, Ausubel FM (2005) Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans. Curr Opin Immunol 17:4–10PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ren M-X, Zhao L, Lv X, Wang D-Y (2017) Antimicrobial proteins in the response to graphene oxide in Caenorhabditis elegans. Nanotoxicology 11:578–590PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Melber A, Haynes CM (2018) UPRmt regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Res 28:281–295PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Rauthan M, Pilon M (2015) A chemical screen to identify inducers of the mitochondrial unfolded protein response in C. elegans. Worm 4:e1096490PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Pellegrino MW, Nargund AM, Kirienko NV, Gillis R, Fiorese CJ, Haynes CM (2014) Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection. Nature 516:414–417PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Haynes CM, Yang Y, Blais SP, Neubert TA, Ron D (2010) The matrix peptide exporter HAF-1 signals a mitochondrial unfolded protein response by activating the transcription factor ZC376.7 in C. elegans. Mol Cell 37:529–540PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM, Haynes CM (2012) Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337:587–590PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Haynes CM, Petrova K, Benedetti C, Yang Y, Ron D (2007) ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev Cell 13:467–480PubMedCrossRefGoogle Scholar
  42. 42.
    Rauthan M, Ranji P, Abukar R, Pilon M (2015) A mutation in Caenorhabditis elegans NDUF-7 activates the mitochondrial stress response and prolongs lifespan via ROS and CED-4. G3 5:1639–1648PubMedCrossRefGoogle Scholar
  43. 43.
    Nargund AM, Fiorese CJ, Pellegrino MW, Deng P, Haynes CM (2015) Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPRmt. Mol Cell 58:123–133PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Bischof LJ, Kao C-Y, Los FCO, Gonzalez MR, Shen Z, Briggs SP, van der Goot FG, Aroian RV (2008) Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo. PLoS Pathog 4:e1000176PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Taylor RC, Dillin A (2013) XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 153:1435–1447PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Shen X, Ellis RE, Lee K, Liu C, Yang K, Solomon A, Yoshida H, Morimoto R, Kurnit DM, Mori K, Kaufman RJ (2001) Complementary signalling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107:893–903PubMedCrossRefGoogle Scholar
  47. 47.
    Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2001) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96CrossRefGoogle Scholar
  48. 48.
    Richardson CE, Kinkel S, Kim DH (2011) Physiological IRE-1-XBP-1 and PEK-1 signaling in Caenorhabditis elegans larval development and immunity. PLoS Genet 7:e1002391PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kozlowski L, Garvis S, Bedet C, Palladino F (2014) The Caenorhabditis elegans HP1 family protein HPL-2 maintains ER homeostasis through the UPR and hormesis. Proc Natl Acad Sci U S A 111:5956–5961PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Sakaki K, Yoshina S, Shen X, Han J, DeSantis MR, Xiong M, Mitani S, Kaufman RJ (2012) RNA surveillance is required for endoplasmic reticulum homeostasis. Proc Natl Acad Sci U S A 109:8079–8084PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Urano F, Calfon M, Yoneda T, Yun C, Kiraly M, Clark SG, Ron D (2002) A survival pathway for Caenorhabditis elegans with a blocked unfolded protein response. J Cell Biol 158:639–646PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Singh J, Aballay A (2017) Endoplasmic reticulum stress caused by lipoprotein accumulation suppresses immunity against bacterial pathogens and contributes to immunosenescence. MBio 8:e00778–e00717PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Marza E, Taouji S, Barroso K, Raymond A, Guignard L, Bonneu M, Pallares-Lupon N, Dupuy J, Fernandez-Zapico ME, Rosenbaum J, Palladino F, Dupuy D, Chevet E (2015) Genome-wide screen identifies a novel p97/CDC-48-dependent pathway regulating ER-stress induced gene transcription. EMBO Rep 16:332–340PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Haskins KA, Russell JF, Gaddis N, Dressman HK, Aballay A (2008) Unfolded protein response genes regulated by CED-1 are required for Caenorhabditis elegans innate immunity. Dev Cell 15:87–97PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Glover-Cutter KM, Lin S, Blackwell TK (2013) Integration of the unfolded protein and oxidative stress responses through SKN-1/Nrf. PLoS Genet 9:e1003701PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Hou NS, Gutschmidt A, Choi DY, Pather K, Shi X, Watts JL, Hoppe T, Taubert S (2014) Activation of the endoplasmic reticulum unfolded protein response by lipid disequilibrium without disturbed proteostasis in vivo. Proc Natl Acad Sci U S A 111:E2271–E2280PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Meléndez A, Levine B (2009) Autophagy in C. elegans. WormBook.  https://doi.org/10.1895/wormbook.1.147.1
  58. 58.
    Kuo C, Hansen M, Troemel E (2018) Autophagy and innate immunity: insights from invertebrate model organisms. Autophagy 14:233–242PubMedCrossRefGoogle Scholar
  59. 59.
    Zou C, Ma Y, Dai L, Zhang K (2014) Autophagy protects C. elegans against necrosis during Pseudomonas aeruginosa infection. Proc Natl Acad Sci U S A 111:12480–12485PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Martinez BA, Kim H, Ray A, Caldwell GA, Caldwell KA (2015) A bacterial metabolite induces glutathione-tractable proteostatic damage, proteasomal disturbances, and PINK1-dependent autophagy in C. elegans. Cell Death Dis 6:e1908PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Samokhvalov V, Scott BA, Crowder CM (2008) Autophagy protects from hypoxic injury in C. elegans. Autophagy 4:1034–1041PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Visvikis O, Ihuegbu N, Labed SA, Luhachack LG, Alves AF, Wollenberg AC, Stuart LM, Stormo GD, Irazoqui JE (2014) Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes. Immunity 40:896–909PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Chen H, Kao C, Liu B, Huang S, Kuo C, Ruan J, Lin Y, Huang C, Chen Y, Wang H, Aroian RV, Chen C (2017) HLH-30/TFEB-mediated autophagy functions in a cell-autonomous manner for epithelium intrinsic cellular defense against bacterial pore-forming toxin in C. elegans. Autophagy 13:371–385PubMedCrossRefGoogle Scholar
  64. 64.
    Das R, Melo JA, Thondamal M, Morton EA, Cornwell AB, Crick B, Kim JH, Swartz EW, Lamitina T, Douglas PM, Samuelsonet AV (2017) The homeodomain-interacting protein kinase HPK-1 preserves protein homeostasis and longevity through master regulatory control of the HSF-1 chaperone network and TORC1-restricted autophagy in Caenorhabditis elegans. PLoS Genet 13:e1007038PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Xiao Y, Liu F, Zhao P, Zou C, Zhang K (2017) PKA/KIN-1 mediates innate immune responses to bacterial pathogens in Caenorhabditis elegans. Innate Immunity 23:656–666PubMedCrossRefGoogle Scholar
  66. 66.
    Kumsta C, Chang JT, Schmalz J, Hansen M (2017) Hormetic heat stress and HSF-1 induce autophagy to improve survival and proteostasis in C. elegans. Nat Commun 8:14337PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Possik E, Jalali Z, Nouet Y, Yan M, Gingras M, Schmeisser K, Panaite L, Dupuy F, Kharitidi D, Chotard L, Jones RG, Hall DH, Pause A (2014) Folliculin regulates AMPK-dependent autophagy and metabolic stress survival. PLoS Genet 10:e1004273PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Jia K, Thomas C, Akbar M, Sun Q, Adams-Huet B, Gilpin C, Levine B (2009) Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proc Natl Acad Sci U S A 106:14564–14569PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Kirienko NV, Ausubel FM, Ruvkun G (2015) Mitophagy confers resistance to siderophore-mediated killing by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 112:1821–1826PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Li W-J, Wang D-Y, Wang D-Y (2018) Regulation of the response of Caenorhabditis elegans to simulated microgravity by p38 mitogen-activated protein kinase signaling. Sci Rep 8:857PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Xiao G-S, Zhao L, Huang Q, Yang J-N, Du H-H, Guo D-Q, Xia M-X, Li G-M, Chen Z-X, Wang D-Y (2018) Toxicity evaluation of Wanzhou watershed of Yangtze Three Gorges Reservoir in the flood season in Caenorhabditis elegans. Sci Rep 8:6734PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Yin J-C, Liu R, Jian Z-H, Yang D, Pu Y-P, Yin L-H, Wang D-Y (2018) Di (2-ethylhexyl) phthalate-induced reproductive toxicity involved in DNA damage-dependent oocyte apoptosis and oxidative stress in Caenorhabditis elegans. Ecotoxicol Environ Saf 163:298–306CrossRefGoogle Scholar
  73. 73.
    Zhao L, Rui Q, Wang D-Y (2017) Molecular basis for oxidative stress induced by simulated microgravity in nematode Caenorhabditis elegans. Sci Total Environ 607–608:1381–1390PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Wu Q-L, Han X-X, Wang D, Zhao F, Wang D-Y (2017) Coal combustion related fine particulate matter (PM2.5) induces toxicity in Caenorhabditis elegans by dysregulating microRNA expression. Toxicol Res 6:432–441CrossRefGoogle Scholar
  75. 75.
    Shao H-M, Han Z-Y, Krasteva N, Wang D-Y (2018) Identification of signaling cascade in the insulin signaling pathway in response to nanopolystyrene particles. Nanotoxicology (in press)Google Scholar
  76. 76.
    Xiao G-S, Zhao L, Huang Q, Du H-H, Guo D-Q, Xia M-X, Li G-M, Chen Z-X, Wang D-Y (2018) Biosafety assessment of water samples from Wanzhou watershed of Yangtze Three Gorges Reservoir in the quiet season in Caenorhabditis elegans. Sci Rep 8:14102CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Dayong Wang
    • 1
  1. 1.School of MedicineSoutheast UniversityNanjingChina

Personalised recommendations