Advertisement

Functions of Development-Related Signaling Pathways in the Regulation of Toxicity of Environmental Toxicants or Stresses

  • Dayong Wang
Chapter

Abstract

Although the development-related signaling pathways are normally considered to be required for certain aspects of development, some development-related signaling pathways may participate in regulating the toxicity of environmental toxicants or stresses under certain conditions. In this chapter, we introduced and discussed the involvement of Wnt, TGF-β, Notch, and developmental timing control-related signaling pathways in the regulation of toxicity of environmental toxicants or stresses and the underlying mechanisms in nematodes. The information introduced here further confirms the potential dual roles of some developmental related signals in the toxicity induction of environmental toxicants or stresses.

Keywords

Development-related signaling pathways Molecular regulation Environmental exposure Caenorhabditis elegans 

References

  1. 1.
    Wang D-Y (2018) Nanotoxicology in Caenorhabditis elegans. Springer, SingaporeCrossRefGoogle Scholar
  2. 2.
    Dong S-S, Qu M, Rui Q, Wang D-Y (2018) Combinational effect of titanium dioxide nanoparticles and nanopolystyrene particles at environmentally relevant concentrations on nematodes Caenorhabditis elegans. Ecotoxicol Environ Saf 161:444–450PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Qu M, Xu K-N, Li Y-H, Wong G, Wang D-Y (2018) Using acs-22 mutant Caenorhabditis elegans to detect the toxicity of nanopolystyrene particles. Sci Total Environ 643:119–126PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Xiao G-S, Zhao L, Huang Q, Yang J-N, Du H-H, Guo D-Q, Xia M-X, Li G-M, Chen Z-X, Wang D-Y (2018) Toxicity evaluation of Wanzhou watershed of Yangtze Three Gorges Reservoir in the flood season in Caenorhabditis elegans. Sci Rep 8:6734PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Zhao L, Rui Q, Wang D-Y (2017) Molecular basis for oxidative stress induced by simulated microgravity in nematode Caenorhabditis elegans. Sci Total Environ 607–608:1381–1390PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Wu Q-L, Han X-X, Wang D, Zhao F, Wang D-Y (2017) Coal combustion related fine particulate matter (PM2.5) induces toxicity in Caenorhabditis elegans by dysregulating microRNA expression. Toxicol Res 6:432–441CrossRefGoogle Scholar
  7. 7.
    Li W-J, Wang D-Y, Wang D-Y (2018) Regulation of the response of Caenorhabditis elegans to simulated microgravity by p38 mitogen-activated protein kinase signaling. Sci Rep 8:857PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Zhi L-T, Yu Y-L, Jiang Z-X, Wang D-Y (2017) mir-355 functions as an important link between p38 MAPK signaling and insulin signaling in the regulation of innate immunity. Sci Rep 7:14560PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Yin J-C, Liu R, Jian Z-H, Yang D, Pu Y-P, Yin L-H, Wang D-Y (2018) Di (2-ethylhexyl) phthalate-induced reproductive toxicity involved in DNA damage-dependent oocyte apoptosis and oxidative stress in Caenorhabditis elegans. Ecotoxicol Environ Saf 163:298–306CrossRefGoogle Scholar
  10. 10.
    Shakoor S, Sun L-M, Wang D-Y (2016) Multi-walled carbon nanotubes enhanced fungal colonization and suppressed innate immune response to fungal infection in nematodes. Toxicol Res 5:492–499CrossRefGoogle Scholar
  11. 11.
    Wu Q-L, Zhi L-T, Qu Y-Y, Wang D-Y (2016) Quantum dots increased fat storage in intestine of Caenorhabditis elegans by influencing molecular basis for fatty acid metabolism. Nanomedicine 12:1175–1184CrossRefGoogle Scholar
  12. 12.
    Zhuang Z-H, Li M, Liu H, Luo L-B, Guo W-D, Wu Q-L, Wang D-Y (2016) Function of RSKS-1-AAK-2-DAF-16 signaling cascade in enhancing toxicity of multi-walled carbon nanotubes can be suppressed by mir-259 activation in Caenorhabditis elegans. Sci Rep 6:32409PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Zhao L, Qu M, Wong G, Wang D-Y (2017) Transgenerational toxicity of nanopolystyrene particles in the range of μg/L in nematode Caenorhabditis elegans. Environ Sci Nano 4:2356–2366CrossRefGoogle Scholar
  14. 14.
    Yang R-L, Rui Q, Kong L, Zhang N, Li Y, Wang X-Y, Tao J, Tian P-Y, Ma Y, Wei J-R, Li G-J, Wang D-Y (2016) Metallothioneins act downstream of insulin signaling to regulate toxicity of outdoor fine particulate matter (PM2.5) during Spring Festival in Beijing in nematode Caenorhabditis elegans. Toxicol Res 5:1097–1105CrossRefGoogle Scholar
  15. 15.
    Xiao G-S, Zhi L-T, Ding X-C, Rui Q, Wang D-Y (2017) Value of mir-247 in warning graphene oxide toxicity in nematode Caenorhabditis elegans. RSC Adv 7:52694–52701CrossRefGoogle Scholar
  16. 16.
    Qu M, Li Y-H, Wu Q-L, Xia Y-K, Wang D-Y (2017) Neuronal ERK signaling in response to graphene oxide in nematode Caenorhabditis elegans. Nanotoxicology 11:520–533CrossRefGoogle Scholar
  17. 17.
    Chen H, Li H-R, Wang D-Y (2017) Graphene oxide dysregulates neuroligin/NLG-1-mediated molecular signaling in interneurons in Caenorhabditis elegans. Sci Rep 7:41655PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Xiao G-S, Chen H, Krasteva N, Liu Q-Z, Wang D-Y (2018) Identification of interneurons required for the aversive response of Caenorhabditis elegans to graphene oxide. J Nanobiotechnol 16:45CrossRefGoogle Scholar
  19. 19.
    Zhao L, Kong J-T, Krasteva N, Wang D-Y (2018) Deficit in epidermal barrier induces toxicity and translocation of PEG modified graphene oxide in nematodes. Toxicol Res 7(6):1061–1070.  https://doi.org/10.1039/C8TX00136G CrossRefGoogle Scholar
  20. 20.
    Ding X-C, Rui Q, Wang D-Y (2018) Functional disruption in epidermal barrier enhances toxicity and accumulation of graphene oxide. Ecotoxicol Environ Saf 163:456–464CrossRefGoogle Scholar
  21. 21.
    Ding X-C, Wang J, Rui Q, Wang D-Y (2018) Long-term exposure to thiolated graphene oxide in the range of μg/L induces toxicity in nematode Caenorhabditis elegans. Sci Total Environ 616–617:29–37PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Yang R-L, Ren M-X, Rui Q, Wang D-Y (2016) A mir-231-regulated protection mechanism against the toxicity of graphene oxide in nematode Caenorhabditis elegans. Sci Rep 6:32214PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Zhi L-T, Ren M-X, Qu M, Zhang H-Y, Wang D-Y (2016) Wnt ligands differentially regulate toxicity and translocation of graphene oxide through different mechanisms in Caenorhabditis elegans. Sci Rep 6:39261PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Eisenmann DM (2005) Wnt signaling. In: WormBook.  https://doi.org/10.1895/wormbook.1.7.1
  25. 25.
    Zhi L-T, Qu M, Ren M-X, Zhao L, Li Y-H, Wang D-Y (2017) Graphene oxide induces canonical Wnt/β-catenin signaling-dependent toxicity in Caenorhabditis elegans. Carbon 113:122–131CrossRefGoogle Scholar
  26. 26.
    Segbert C, Johnson K, Theres C, van Furden D, Bossinger O (2004) Molecular and functional analysis of apical junction formation in the gut epithelium of Caenorhabditis elegans. Dev Biol 266:17–26PubMedCrossRefGoogle Scholar
  27. 27.
    Espelt MV, Estevez AY, Yin X, Strange K (2005) Oscillatory Ca2+ signaling in the isolated Caenorhabditis elegans intestine: role of the inositol-1,4,5- trisphosphate receptor and phospholipases C β and γ. J Gen Physiol 126:379–392PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ren M-X, Zhao L, Ding X-C, Krasteva N, Rui Q, Wang D-Y (2018) Developmental basis for intestinal barrier against the toxicity of graphene oxide. Part Fibre Toxicol 15:26PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Irazoqui JE, Ng A, Xavier RJ, Ausubel FM (2008) Role for β-catenin and HOX transcription factors in Caenorhabditis elegans and mammalian host epithelial-pathogen interactions. Proc Natl Acad Sci U S A 105:17469–17474PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Gumienny TL, Savage-Dunn C (2013) TGF-β signaling in C. elegans. In: WormBook.  https://doi.org/10.1895/wormbook.1.22.2
  31. 31.
    Sun L-M, Liao K, Liang S, Yu P-H, Wang D-Y (2015) Synergistic activity of magnolol with azoles and its possible antifungal mechanism against Candida albicans. J Appl Microbiol 118:826–838CrossRefGoogle Scholar
  32. 32.
    Sun L-M, Liao K, Li Y-P, Zhao L, Liang S, Guo D, Hu J, Wang D-Y (2016) Synergy between PVP-coated silver nanoparticles and azole antifungal against drug-resistant Candida albicans. J Nanosci Nanotechnol 16:2325–2335CrossRefGoogle Scholar
  33. 33.
    Sun L-M, Zhi L-T, Shakoor S, Liao K, Wang D-Y (2016) microRNAs involved in the control of innate immunity in Candida infected Caenorhabditis elegans. Sci Rep 6:36036PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Yu Y-L, Zhi L-T, Guan X-M, Wang D-Y, Wang D-Y (2016) FLP-4 neuropeptide and its receptor in a neuronal circuit regulate preference choice through functions of ASH-2 trithorax complex in Caenorhabditis elegans. Sci Rep 6:21485PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Sun L-M, Liao K, Hong C-C, Wang D-Y (2017) Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction. PLoS ONE 12:e0172228PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Sun L-M, Liao K, Wang D-Y (2017) Honokiol induces superoxide production by targeting mitochondrial respiratory chain complex I in Candida albicans. PLoS ONE 12:e0184003PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Yu Y-L, Zhi L-T, Wu Q-L, Jing L-N, Wang D-Y (2018) NPR-9 regulates innate immune response in Caenorhabditis elegans by antagonizing activity of AIB interneurons. Cell Mol Immunol 15:27–37CrossRefGoogle Scholar
  38. 38.
    Mallo GV, Kurz CL, Couillault C, Pujol N, Granjeaud S, Kohara Y, Ewbank JJ (2002) Inducible antibacterial defense system in C. elegans. Curr Biol 12:1209–1214PubMedCrossRefGoogle Scholar
  39. 39.
    Partridge FA, Gravato-Nobre MJ, Hodgkin J (2010) Signal transduction pathways that function in both development and innate immunity. Dev Dyn 239:1330–1336PubMedGoogle Scholar
  40. 40.
    Savage-Dunn C, Padgett RW (2017) The TGF-β family in Caenorhabditis elegans. Cold Spring Harb Perspect Biol.  https://doi.org/10.1101/cshperspect.a022178 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kim H, Jeong J, Chatterjee N, Roca CP, Yoon D, Kim S, Kim Y, Choi J (2017) JAK/STAT and TGF-β activation as potential adverse outcome pathway of TiO2NPs phototoxicity in Caenorhabditis elegans. Sci Rep 7:17833PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ren M-X, Zhao L, Lv X, Wang D-Y (2017) Antimicrobial proteins in the response to graphene oxide in Caenorhabditis elegans. Nanotoxicology 11:578–590PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Goetting DL, Soto R, Van Buskirk C (2018) Food-dependent plasticity in Caenorhabditis elegans stress-induced sleep is mediated by TOR–FOXA and TGF-β signaling. Genetics 209:1183–1195PubMedCrossRefGoogle Scholar
  44. 44.
    Wu Q-L, Cao X-O, Yan D, Wang D-Y, Aballay A (2015) Genetic screen reveals link between maternal-effect sterile gene mes-1 and P. aeruginosa-induced neurodegeneration in C. elegans. J Biol Chem 290:29231–29239PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    TeKippe M, Aballay A (2010) C. elegans germline-deficient mutants respond to pathogen infection using shared and distinct mechanisms. PLoS ONE 5:e11777PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Sokol NS (2012) Small temporal RNAs in animal development. Curr Opin Genet Dev 22:368–373PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Reinhart B, Slack F, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21 nucleotide let-7 RNA regulates C. elegans developmental timing. Nature 403:901–906PubMedCrossRefGoogle Scholar
  48. 48.
    Zhao L, Wan H-X, Liu Q-Z, Wang D-Y (2017) Multi-walled carbon nanotubes-induced alterations in microRNA let-7 and its targets activate a protection mechanism by conferring a developmental timing control. Part Fibre Toxicol 14:27PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Zhi L-T, Yu Y-L, Li X-Y, Wang D-Y, Wang D-Y (2017) Molecular control of innate immune response to Pseudomonas aeruginosa infection by intestinal let-7 in Caenorhabditis elegans. PLoS Pathog 13:e1006152PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Fuhrman LE, Goel AK, Smith J, Shianna KV, Aballay A (2009) Nucleolar proteins suppress Caenorhabditis elegans innate immunity by inhibiting p53/CEP-1. PLoS Genet 5:e1000657PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Cogoni C, Macino G (2000) Post-transcriptional gene silencing across kingdoms. Curr Opin Genet 6:638–643CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Dayong Wang
    • 1
  1. 1.School of MedicineSoutheast UniversityNanjingChina

Personalised recommendations