Advertisement

Roles of Oxidative Stress-Related Molecular Signals in the Regulation of Toxicity of Environmental Toxicants or Stresses

  • Dayong Wang
Chapter

Abstract

In organisms, not only oxidative stress can act as a cellular contributor to toxicity induction of environmental toxicants or stress, but also oxidative stress-related molecular signals can further act as important molecular regulators for the toxicity induction of environmental toxicants or stress. We here first introduced the important roles of mitochondrial complex signals in the regulation of toxicity of environmental toxicants or stresses. Moreover, we also introduced the important roles of SOD proteins, CTL proteins, and GST proteins in the regulation of toxicity of environmental toxicants or stresses. The important roles of oxidative stress-related molecular signals in the regulation of toxicity of environmental toxicants or stresses are further discussed.

Keywords

Oxidative stress-related molecular signals Toxicity regulation Environmental exposure Caenorhabditis elegans 

References

  1. 1.
    Yang R-L, Rui Q, Kong L, Zhang N, Li Y, Wang X-Y, Tao J, Tian P-Y, Ma Y, Wei J-R, Li G-J, Wang D-Y (2016) Metallothioneins act downstream of insulin signaling to regulate toxicity of outdoor fine particulate matter (PM2.5) during Spring Festival in Beijing in nematode Caenorhabditis elegans. Toxicol Res 5:1097–1105CrossRefGoogle Scholar
  2. 2.
    Yang R-L, Ren M-X, Rui Q, Wang D-Y (2016) A mir-231-regulated protection mechanism against the toxicity of graphene oxide in nematode Caenorhabditis elegans. Sci Rep 6:32214PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Zhi L-T, Ren M-X, Qu M, Zhang H-Y, Wang D-Y (2016) Wnt ligands differentially regulate toxicity and translocation of graphene oxide through different mechanisms in Caenorhabditis elegans. Sci Rep 6:39261PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Zhi L-T, Fu W, Wang X, Wang D-Y (2016) ACS-22, a protein homologous to mammalian fatty acid transport protein 4, is essential for the control of toxicity and translocation of multi-walled carbon nanotubes in Caenorhabditis elegans. RSC Adv 6:4151–4159CrossRefGoogle Scholar
  5. 5.
    Shakoor S, Sun L-M, Wang D-Y (2016) Multi-walled carbon nanotubes enhanced fungal colonization and suppressed innate immune response to fungal infection in nematodes. Toxicol Res 5:492–499CrossRefGoogle Scholar
  6. 6.
    Wu Q-L, Zhi L-T, Qu Y-Y, Wang D-Y (2016) Quantum dots increased fat storage in intestine of Caenorhabditis elegans by influencing molecular basis for fatty acid metabolism. Nanomedicine 12:1175–1184PubMedCrossRefGoogle Scholar
  7. 7.
    Zhuang Z-H, Li M, Liu H, Luo L-B, Gu W-D, Wu Q-L, Wang D-Y (2016) Function of RSKS-1-AAK-2-DAF-16 signaling cascade in enhancing toxicity of multi-walled carbon nanotubes can be suppressed by mir-259 activation in Caenorhabditis elegans. Sci Rep 6:32409PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Wu Q-L, Han X-X, Wang D, Zhao F, Wang D-Y (2017) Coal combustion related fine particulate matter (PM2.5) induces toxicity in Caenorhabditis elegans by dysregulating microRNA expression. Toxicol Res 6:432–441CrossRefGoogle Scholar
  9. 9.
    Ding X-C, Rui Q, Wang D-Y (2018) Functional disruption in epidermal barrier enhances toxicity and accumulation of graphene oxide. Ecotoxicol Environ Saf 163:456–464PubMedCrossRefGoogle Scholar
  10. 10.
    Zhao L, Qu M, Wong G, Wang D-Y (2017) Transgenerational toxicity of nanopolystyrene particles in the range of μg/L in nematode Caenorhabditis elegans. Environ Sci Nano 4:2356–2366CrossRefGoogle Scholar
  11. 11.
    Xiao G-S, Zhi L-T, Ding X-C, Rui Q, Wang D-Y (2017) Value of mir-247 in warning graphene oxide toxicity in nematode Caenorhabditis elegans. RSC Adv 7:52694–52701CrossRefGoogle Scholar
  12. 12.
    Ren M-X, Zhao L, Lv X, Wang D-Y (2017) Antimicrobial proteins in the response to graphene oxide in Caenorhabditis elegans. Nanotoxicology 11:578–590PubMedCrossRefGoogle Scholar
  13. 13.
    Qu M, Li Y-H, Wu Q-L, Xia Y-K, Wang D-Y (2017) Neuronal ERK signaling in response to graphene oxide in nematode Caenorhabditis elegans. Nanotoxicology 11:520–533PubMedCrossRefGoogle Scholar
  14. 14.
    Chen H, Li H-R, Wang D-Y (2017) Graphene oxide dysregulates Neuroligin/NLG-1-mediated molecular signaling in interneurons in Caenorhabditis elegans. Sci Rep 7:41655PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Xiao G-S, Zhao L, Huang Q, Yang J-N, Du H-H, Guo D-Q, Xia M-X, Li G-M, Chen Z-X, Wang D-Y (2018) Toxicity evaluation of Wanzhou watershed of Yangtze Three Gorges Reservior in the flood season in Caenorhabditis elegans. Sci Rep 8:6734PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Li W-J, Wang D-Y, Wang D-Y (2018) Regulation of the response of Caenorhabditis elegans to simulated microgravity by p38 mitogen-activated protein kinase signaling. Sci Rep 8:857PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Dong S-S, Qu M, Rui Q, Wang D-Y (2018) Combinational effect of titanium dioxide nanoparticles and nanopolystyrene particles at environmentally relevant concentrations on nematodes Caenorhabditis elegans. Ecotoxicol Environ Saf 161:444–450PubMedCrossRefGoogle Scholar
  18. 18.
    Qu M, Xu K-N, Li Y-H, Wong G, Wang D-Y (2018) Using acs-22 mutant Caenorhabditis elegans to detect the toxicity of nanopolystyrene particles. Sci Total Environ 643:119–126PubMedCrossRefGoogle Scholar
  19. 19.
    Zhao L, Wan H-X, Liu Q-Z, Wang D-Y (2017) Multi-walled carbon nanotubes-induced alterations in microRNA let-7 and its targets activate a protection mechanism by conferring a developmental timing control. Part Fibre Toxicol 14:27PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Zhao L, Kong J-T, Krasteva N, Wang D-Y (2018) Deficit in epidermal barrier induces toxicity and translocation of PEG modified graphene oxide in nematodes. Toxicol Res 7(6):1061–1070.  https://doi.org/10.1039/C8TX00136G CrossRefGoogle Scholar
  21. 21.
    Xiao G-S, Chen H, Krasteva N, Liu Q-Z, Wang D-Y (2018) Identification of interneurons required for the aversive response of Caenorhabditis elegans to graphene oxide. J Nanbiotechnol 16:45CrossRefGoogle Scholar
  22. 22.
    Ren M-X, Zhao L, Ding X-C, Krasteva N, Rui Q, Wang D-Y (2018) Developmental basis for intestinal barrier against the toxicity of graphene oxide. Part Fibre Toxicol 15:26PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Yin J-C, Liu R, Jian Z-H, Yang D, Pu Y-P, Yin L-H, Wang D-Y (2018) Di (2-ethylhexyl) phthalate-induced reproductive toxicity involved in DNA damage-dependent oocyte apoptosis and oxidative stress in Caenorhabditis elegans. Ecotoxicol Environ Saf 163:298–306PubMedCrossRefGoogle Scholar
  24. 24.
    Wang D-Y (2018) Nanotoxicology in Caenorhabditis elegans. Springer, SingaporeCrossRefGoogle Scholar
  25. 25.
    Zhao Y-L, Wu Q-L, Li Y-P, Wang D-Y (2013) Translocation, transfer, and in vivo safety evaluation of engineered nanomaterials in the non-mammalian alternative toxicity assay model of nematode Caenorhabditis elegans. RSC Adv 3:5741–5757CrossRefGoogle Scholar
  26. 26.
    Ruan Q-L, Qiao Y, Zhao Y-L, Xu Y, Wang M, Duan J-A, Wang D-Y. (2016) Beneficial effects of Glycyrrhizae radix extract in preventing oxidative damage and extending the lifespan of Caenorhabditis elegans. J Ethnopharmacol 177: 101–110PubMedCrossRefGoogle Scholar
  27. 27.
    Pujol C, Bratic-Hench I, Sumakovic M, Hench J, Mourier A, Baumann L, Pavlenko V, Trifunovic A (2013) Succinate dehydrogenase upregulation destabilize complex I and limits the lifespan of gas-1 mutant. PLoS ONE 8:e59493PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Sedensky MM, Morgan PG (2006) Mitochondrial respiration and reactive oxygen species in C. elegans. Exp Gerontol 41:957–967PubMedCrossRefGoogle Scholar
  29. 29.
    Cao J, Liu Y, Jing X, Yin J, Li J, Xu B, Tan Y, Zheng N (2015) Well-defined thiolated nanographene as for efficient and stable perovskite solar cells. J Am Chem Soc 137:10914–10917PubMedCrossRefGoogle Scholar
  30. 30.
    Debgupta J, Pillai VK (2013) Thiolated graphene – a new platform for anchoring CdSe quantum dots for hybrid heterostructures. Nano 5:3615–3619Google Scholar
  31. 31.
    de Sousa IP, Buttenhauser K, Suchaoin W, Partenhauser A, Perrone M, Matuszczak B, Bernkop-Schnurch A (2016) Thiolated graphene oxide as promising mucoadhesive carrier for hydrophobic drugs. Int J Pharm 509:360–367CrossRefGoogle Scholar
  32. 32.
    Wang Q, Zhou Z, Zhai Y, Zhang L, Hong W, Zhang Z, Dong S (2015) Label-free aptamer biosensor for thrombin detection based on functionalized graphene nanocomposites. Talanta 141:247–252PubMedCrossRefGoogle Scholar
  33. 33.
    Ding X-C, Wang J, Rui Q, Wang D-Y (2018) Long-term exposure to thiolated graphene oxide in the range of μg/L induces toxicity in nematode Caenorhabditis elegans. Sci Total Environ 616–617:29–37PubMedCrossRefGoogle Scholar
  34. 34.
    Kayser E, Morgan PG, Sedensky MM (2004) Mitochondrial complex I function affects halothane sensitivity in Caenorhabditis elegans. Anesthesiology 101:365–372PubMedCrossRefGoogle Scholar
  35. 35.
    Kayser E, Hoppel CL, Morgan PG, Sedensky MM (2003) A mutation in mitochondrial complex I increases ethanol sensitivity in Caenorhabditis elegans. Alcohol Clin Exp Res 27:584–592PubMedCrossRefGoogle Scholar
  36. 36.
    Kondo M, Senoo-Matsuda N, Yanase S, Ishii T, Hartman PS, Ishii N (2005) Effect of oxidative stress on translocation of DAF-16 in oxygen-sensitive mutants, mev-1 and gas-1 of Caenorhabditis elegans. Mech Ageing Dev 126:637–641PubMedCrossRefGoogle Scholar
  37. 37.
    Grad LI, Lemire BD (2004) Mitochondrial complex I mutations in Caenorhabditis elegans produce cytochrome c oxidase deficiency, oxidative stress and vitamin-responsive lactic acidosis. Hum Mol Genet 13:303–314PubMedCrossRefGoogle Scholar
  38. 38.
    Yang W, Hekimi S (2010) A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol 8:e1000556PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Schaar CE, Dues DJ, Spielbauer KK, Machiela E, Cooper JF, Senchuk M, Hekimi S, Van Raamsdonk JM (2015) Mitochondrial and cytoplasmic ROS have opposing effects on lifespan. PLoS Genet 11:e1004972PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Senchuk MM, Dues DJ, Schaar CE, Johnson BK, Madaj ZB, Bowman MJ, Winn ME, Van Raamsdonk JM (2018) Activation of DAF-16/FOXO by reactive oxygen species contributes to longevity in long-lived mitochondrial mutants in Caenorhabditis elegans. PLoS Genet 14:e1007268PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Zhao L, Rui Q, Wang D-Y (2017) Molecular basis for oxidative stress induced by simulated microgravity in nematode Caenorhabditis elegans. Sci Total Environ 607–608:1381–1390PubMedCrossRefGoogle Scholar
  42. 42.
    Wu Q-L, Yin L, Li X, Tang M, Zhang T, Wang D-Y (2013) Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans. Nanoscale 5:9934–9943PubMedCrossRefGoogle Scholar
  43. 43.
    Wu Q-L, Zhao Y-L, Li Y-P, Wang D-Y (2014) Molecular signals regulating translocation and toxicity of graphene oxide in nematode Caenorhabditis elegans. Nanoscale 6:11204–11212PubMedCrossRefGoogle Scholar
  44. 44.
    Liu Z-F, Zhou X-F, Wu Q-L, Zhao Y-L, Wang D-Y (2015) Crucial role of intestinal barrier in the formation of transgenerational toxicity in quantum dots exposed nematodes Caenorhabditis elegans. RSC Adv 5:94257–94266CrossRefGoogle Scholar
  45. 45.
    Dues DJ, Schaar CE, Johnson BK, Bowman MJ, Winn ME, Senchuk MM, Van Raamsdonk JM (2017) Uncoupling of oxidative stress resistance and lifespan in long-lived isp-1 mitochondrial mutants in Caenorhabditis elegans. Free Radic Biol Med 108:362–373PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Wu Q-L, Zhou X-F, Han X-X, Zhuo Y-Z, Zhu S-T, Zhao Y-L, Wang D-Y (2016) Genome-wide identification and functional analysis of long noncoding RNAs involved in the response to graphene oxide. Biomaterials 102:277–291PubMedCrossRefGoogle Scholar
  47. 47.
    Suthammarak W, Morgan PG, Sedensky MM (2010) Mutations in mitochondrial complex III uniquely affect complex I in Caenorhabditis elegans. J Biol Chem 285:40724–40731PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Suthammarak W, Yang Y, Morgan PG, Sedensky MM (2009) Complex I function is defective in complex IV-deficient Caenorhabditis elegans. J Biol Chem 284:6425–6435PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Wu Q-L, Li Y-X, Li Y-P, Zhao Y-L, Ge L, Wang H-F, Wang D-Y (2013) Crucial role of biological barrier at the primary targeted organs in controlling translocation and toxicity of multi-walled carbon nanotubes in nematode Caenorhabditis elegans. Nanoscale 5:11166–11178PubMedCrossRefGoogle Scholar
  50. 50.
    Liu P-D, He K-W, Li Y-X, Wu Q-L, Yang P, Wang D-Y (2012) Exposure to mercury causes formation of male-specific structural deficits by inducing oxidative damage in nematodes. Ecotoxicol Environ Saf 79:90–100PubMedCrossRefGoogle Scholar
  51. 51.
    Monaghan RM, Barnes RG, Fisher K, Andreou T, Rooney N, Poulin GB, Whitmarsh AJ (2015) A nuclear role for the respiratory enzyme CLK-1 in regulating mitochondrial stress responses and longevity. Nat Cell Biol 17:782–792PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Yanase S, Onodera A, Tedesco P, Johnson TE, Ishii N (2009) SOD-1 deletions in Caenorhabditis elegans alter the localization of intracellular reactive oxygen species and show molecular compensation. J Gerontol Ser A Biol Sci Med Sci A 64:530–539CrossRefGoogle Scholar
  53. 53.
    Roh J, Park Y, Choi J (2009) A cadmium toxicity assay using stress responsive Caenorhabditis elegans mutant strains. Environ Toxicol Pharmacol 28:409–413PubMedCrossRefGoogle Scholar
  54. 54.
    Back P, Matthijssens F, Vlaeminck C, Braeckman BP, Vanfleteren JR (2010) Effects of sod gene overexpression and deletion mutation on the expression profiles of reporter genes of major detoxification pathways in Caenorhabditis elegans. Exp Gerontol 45:603–610PubMedCrossRefGoogle Scholar
  55. 55.
    Li Y-X, Wang W, Wu Q-L, Li Y-P, Tang M, Ye B-P, Wang D-Y (2012) Molecular control of TiO2-NPs toxicity formation at predicted environmental relevant concentrations by Mn-SODs proteins. PLoS ONE 7:e44688PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Rui Q, Zhao Y-L, Wu Q-L, Tang M, Wang D-Y (2013) Biosafety assessment of titanium dioxide nanoparticles in acutely exposed nematode Caenorhabditis elegans with mutations of genes required for oxidative stress or stress response. Chemosphere 93:2289–2296PubMedCrossRefGoogle Scholar
  57. 57.
    Wu Q-L, Zhao Y-L, Li Y-P, Wang D-Y (2014) Susceptible genes regulate the adverse effects of TiO2-NPs at predicted environmental relevant concentrations on nematode Caenorhabditis elegans. Nanomedicine 10:1263–1271PubMedCrossRefGoogle Scholar
  58. 58.
    Sun L-M, Wu Q-L, Liao K, Yu P-H, Cui Q-H, Rui Q, Wang D-Y (2016) Contribution of heavy metals to toxicity of coal combustion related fine particulate matter (PM2.5) in Caenorhabditis elegans with wild-type or susceptible genetic background. Chemosphere 144:2392–2400PubMedCrossRefGoogle Scholar
  59. 59.
    Wu Q-L, Li Y-P, Tang M, Wang D-Y (2012) Evaluation of environmental safety concentrations of DMSA coated Fe2O3-NPs using different assay systems in nematode Caenorhabditis elegans. PLoS ONE 7:e43729PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Roh J, Sim SJ, Yi J, Park K, Chung KH, Ryu D, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43:3933–3940PubMedCrossRefGoogle Scholar
  61. 61.
    Zhao Y-L, Yang R-L, Rui Q, Wang D-Y (2016) Intestinal insulin signaling encodes two different molecular mechanisms for the shortened longevity induced by graphene oxide in Caenorhabditis elegans. Sci Rep 6:24024PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Han Y, Song S, Wu H, Zhang J, Ma E (2017) Antioxidant enzymes and their role in phoxim and carbaryl stress in Caenorhabditis elegans. Pestic Biochem Physiol 138:43–50PubMedCrossRefGoogle Scholar
  63. 63.
    Song S, Zhang X, Wu H, Han Y, Zhang J, Ma E, Guo Y (2014) Molecular basis for antioxidant enzymes in mediating copper detoxification in the nematode Caenorhabditis elegans. PLoS ONE 9:e107685PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Li Q, Zhang S, Yu Y, Wang L, Guan S, Li P (2012) Toxicity of sodium fluoride to Caenorhabditis elegans. Biomed Environ Sci 25:216–223PubMedGoogle Scholar
  65. 65.
    Helmcke KJ, Aschner M (2010) Hormetic effect of methylmercury on Caenorhabditis elegans. Toxicol Appl Pharmacol 248:156–164PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Dayong Wang
    • 1
  1. 1.School of MedicineSoutheast UniversityNanjingChina

Personalised recommendations